Vol. 67
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-27
A New Method of Driving Wire Dipole Antennas to Multiband Operation via Non-Uniform EBG Lattices for Employment to Wireless Communication Applications
By
Progress In Electromagnetics Research C, Vol. 67, 173-184, 2016
Abstract
In this paper, a novel approach is attained to the design of low profile antenna structures with wire dipoles and multiband operation. The aim is achieved by utilization of non-uniform Electromagnetic Band Gap (EBG) lattices as reflectors, and this potential comes to be added to the total of special capabilities of this type of Artificial Magnetic Conductors (AMC). It is proved that a properly designed EBG of this type can resonate at more than one frequency and is capable to drive, inside these bands, the dipole to higher order modes of operation besides its basic one. The resulting hybrid radiator apart from its multiband operation exhibits high gain that reaches the value of 9.6 dB, satisfactory Mean Effective Gain (MEG) and very low correlation coefficients, much less than 0.1, between the signals at the input of the dipoles in the case that the radiator is configured as an antenna array. The study of these quantities was performed using the signal parameters of a real mobile communication environment along with the hybrid antenna properties of operation. The presented analytical results show that the designed radiators are competitive to the classical microstrip ones and can be effectively used in modern wireless communication networks, incorporated either into stationary or into mobile units.
Citation
Christos Mourtzios Katherine Siakavara , "A New Method of Driving Wire Dipole Antennas to Multiband Operation via Non-Uniform EBG Lattices for Employment to Wireless Communication Applications," Progress In Electromagnetics Research C, Vol. 67, 173-184, 2016.
doi:10.2528/PIERC16071802
http://www.jpier.org/PIERC/pier.php?paper=16071802
References

1. Best, S. and D. Hanna, "Design of a broadband dipole in close proximity to an EBG ground plane," IEEE Antennas and Propagation Magazine, Vol. 50, 52-64, 2008.
doi:10.1109/MAP.2008.4768923

2. Toubet, M. S., M. Hajj, R. Chantalat, E. Arnaud, B. Jecko, T. Monediere, H. Zhang, and J. Diot, "Wide bandwidth, high-gain, and low-profile EBG prototype for high power applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1362-1365, 2011.
doi:10.1109/LAWP.2011.2177953

3. Yuan, T., H. Hafdallah-Ouslimani, A. C. Priou, G. Lacotte, and G. Colligon, "Dual-layer EBG structures for low profile ‘bent’ monopole antennas," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.
doi:10.2528/PIERB12110502

4. Siakavara, K. and T. Ganatsos, "Modification of the radiation patterns of higher order modes of triangular printed antennas by EBG ground planes," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 124-128, 2009.
doi:10.1109/LAWP.2008.2010958

5. Kim, S.-H., T. T. Nguyen, and J.-H. Jang, "Reflection characteristics of 1-d EBG ground plane and its application to a planar dipole antenna," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.
doi:10.2528/PIER11062909

6. Zhou, L., H. H. Ouslimani, A. Priou, A. Ourir, and O. Maas, "Understanding the behavior of miniaturized metamaterial-based dipole antennas in leky wave regime," Applied Physics A, Vol. 106, 145-149, 2012.
doi:10.1007/s00339-011-6656-x

7. Hosseini, M., D. M. Klymyshyn, G. Wells, and X. Liu, "Thick metal EBG cells with narrow gaps and application to the design of miniaturized antennas," Progress In Electromagnetics Research, Vol. 145, 185-193, 2014.
doi:10.2528/PIER14021503

8. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural network — Based design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, 1165-1169, 2007.
doi:10.2529/PIERS070215124728

9. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Mean effective gain enhancement of antenna systems with EBG ground plane," Proc. of the 3rd European Conference on Antennas and Propagation, 3567-3571, Berlin, March 2009.

10. Margaret, D. H., M. R. Subasree, S. Susithra, S. S. Keerthika, and B. Manimegalai, "Mutual coupling reduction in MIMO antenna system using EBG structures," International Conference on Signal Processing and Communications (SPCOM), 2012.

11. Michailidis, E., C. Tsimenidis, and G. Chester, "Mutual coupling reduction in a linear two element patch array and its effect on theoretical MIMO capacity," Proc. of Louhborough Antennas and Propagation Conference, 457-460, Louhborough, 2008.

12. Naser-Moghadasi, M., R. Ahmadian, Z. Mansouri, F. B. Zarrab, and M. Rahimi, "Compact EBG structures for reduction of mutual coupling in patch antenna MIMO arrays," Progress In Electromagnetics Research C, Vol. 53, 145-154, 2014.
doi:10.2528/PIERC14081603

13. Islam, M. T. and Md. Shahidul Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205

14. Yoon, J.-H., J. Ahn, K. Chang, and Y.-J. Yoon, "Beam tilted Base station antenna with electromagnetic gradient surface," Proc. of International Conference on Electromagnetics in Advanced Applications (ICEAA), 481-484, 2010.

15. Chang, K., J. Ahn, and Y.-J. Yoon, "High impedance surface with nonidentical lattices," Proc. of IWAT2008, 474-477, Chiba, Japan, 2008.

16. Chang, K. and Y.-J. Yoon, "One-dimensional flat parabola antenna using synthesized EBG textures," Proc. of IEEE Antennas and Propagation Society International Symposium, APSURSI ’09, 2009.

17. Mourtzios, Ch. and K. Siakavara, "Novel antenna configurations with non-uniform ebg lattices for wireless communication networks," Proc. of the 7th European Conference on Antennas and Propagation(EuCAP), 2673-2677, Gothenburg, April 2013.

18. Mourtzios, Ch. and K. Siakavara, "Hybrid antenna-EBG structures with tunned periodicity for enhancement of operation of wireless networks," Proc. of International Conference on Electromagnetic Advanced Applications (ICEAA’13), 125-128, (file 155.pdf), Turin, September 2013.

19. Mourtzios, Ch. and K. Siakavara, "Hybrid antenna arrays with non-uniform electromagnetic band gap lattices for wireless communication networks," Indian Journal of Physics, Vol. 89, 811-823, 2015.
doi:10.1007/s12648-014-0644-x

20. Mourtzios, Ch., Th. Ganatsos, and K. Siakavara, "MEG and correlation characteristics of hybrid dipole — Nonuniform EBG antenna systems," Proc. of the 8th European Conference on Antennas and Propagation (EuCAP2014), 3433-3437, Hauge, April 2014.

21. Wu, P., Z. Kuai, and X. Zhu, "Multiband antennas comprising multiple frame-printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 57, 3313-3316, 2009.
doi:10.1109/TAP.2009.2029371

22. Peng, L. and Ch. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.
doi:10.2528/PIERB12113012

23. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

24. Antoniades, M. A. and G. V. Eleftheriades, "Multiband compact printed dipole antennas using NRI-TL metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 60, 5613-5626, 2012.
doi:10.1109/TAP.2012.2211324

25. Saurav, K., D. Sarkar, and K. V. Srivastava, "CRLH unit-cell loaded multiband printed dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 852-855, 2014.
doi:10.1109/LAWP.2014.2320918

26. Khan, O. M., Z. U. Islam, I. Rashid, F. A. Bhatti, and Q. U. Islam, "Novel miniaturized Koch pentagonal fractal antenna for multiband wireless applications," Progress In Electromagnetic Research, Vol. 141, 693-610, 2013.
doi:10.2528/PIER13060904

27. Li, D. and J.-F. Mao, "Circularly arced Koch fractal multiband multimode monopole antenna," Progress In Electromagnetics Research, Vol. 140, 653-680, 2013.
doi:10.2528/PIER13040401

28. Siakavara, K. and F. Tsaldaris, "A multi-wideband microstrip antenna designed by the square curve fractal technique," Microwave and Optical Technology Letters, Vol. 41, 180-185, 2004.
doi:10.1002/mop.20086

29. Peristerianos, A., A. Theopoulos, A. G. Koutinos, T. Kaifas, and K. Siakavara, "Dual-band fractal semi-printed element antenna arrays for MIMO applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 730-733, 2016.
doi:10.1109/LAWP.2015.2470681

30. Engheta, N. and R. W. Ziolkowski, Metamaterials Physics and Engineering Exploriations, John Wiley & Sons, 2006.

31. Kildal, P.-S., A. A. Kishk, and S. Maci, "Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 2-7, January 2005 (Guest Editorial).
doi:10.1109/TAP.2004.841530

32. Rahmat-Samii, Y. and F. Yang, Electromagnetic Band Gap Structure in Antenna Engineering, Cambridge University Press, Cambridge, UK, 2009.

33. Gross, F. B., Frontiers in Antennas Next Generation Design & Engineering, Mc Graw Hill, 2011.

34. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

35. Pozar, D. M., Microwave Engneering, 3 Ed., John Wiley & Sons, 2005.

36. Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House, 2001.