Vol. 67
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-18
A Miniaturized 3-dB Microstrip TRD Coupled-Line Rat-Race Coupler with Harmonics Suppression
By
Progress In Electromagnetics Research C, Vol. 67, 107-116, 2016
Abstract
A miniaturized microstrip rat-race coupler with harmonics suppression is proposed by using shorted trans-directional (TRD) coupled lines. The shorted TRD coupled lines consist of a set of capacitor-loaded λ/4 coupled microstrip lines with two shorts, which are used to replace the 3λ/4 uniform transmission-line section (UTLS) in the traditional 3λ/2 ring coupler for miniaturization. To attain perfect matching for any coupling factor of the TRD coupled lines, shorted TRD coupled lines are synthesized and the design equations are derived. To further reduce the ring size, T-type transmission-line equivalent circuits are also adopted to replace the λ/4 UTLS and associated with a transmission zero for harmonic attenuation. Using the proposed method, a microstrip ring coupler with 26.7% circuit size of a traditional one is fabricated and tested. The measured results show that the bandwidth for the return loss of better than 10 dB is 43.9% and that for isolation of better than 20 dB is 18.7% with a maximum isolation of 40.6 dB. There is no spurious passband up to the sixth harmonic of the design center frequency with more than 20 dB suppression from the third to fifth harmonics.
Citation
Yuan Cao Zhongbao Wang Shao-Jun Fang Yuan'an Liu , "A Miniaturized 3-dB Microstrip TRD Coupled-Line Rat-Race Coupler with Harmonics Suppression," Progress In Electromagnetics Research C, Vol. 67, 107-116, 2016.
doi:10.2528/PIERC16072705
http://www.jpier.org/PIERC/pier.php?paper=16072705
References

1. Guo, J., Z. Xu, C. Qian, and W.-B. Dou, "Design of a microstrip balanced mixer for satellite communication," Progress In Electromagnetics Research, Vol. 115, 289-301, 2011.
doi:10.2528/PIER11022109

2. Gruszczynski, S., K. Wincza, and J. Borgosz, "Application of a rat-race coupler in low-cost load and source pull transistor amplifier design," Microwave Opt. Technol. Lett., Vol. 51, No. 11, 2537-2541, 2009.
doi:10.1002/mop.24668

3. Jin, H., K. S. Chin, W. Che, C. C. Chang, H. J. Li, and Q. Xue, "Differential-fed patch antenna arrays with low cross polarization and wide bandwidths," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1069-1072, 2014.

4. Chin, K.-S., J.-A. Liu, C. C. Chang, and J.-C. Cheng, "LTCC differential-fed patch antennas with rat-race feeding structures," Progress In Electromagnetics Research C, Vol. 32, 95-108, 2012.
doi:10.2528/PIERC12071802

5. March, S., "A wideband stripline hybrid ring," IEEE Trans. Microwave Theory Tech., Vol. 16, No. 6, 361-362, 1968.
doi:10.1109/TMTT.1968.1126693

6. Ahn, H.-R. and B. Kim, "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 7, 1806-1817, 2009.
doi:10.1109/TMTT.2009.2022815

7. Ahn, H.-R. and S. Nam, "Wideband microstrip coupled-line ring hybrids for high power-division ratios," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 5, 1768-1780, 2013.
doi:10.1109/TMTT.2013.2251654

8. Yeung, L. K. and Y. E. Wang, "A novel 180◦ hybrid using broadside-coupled asymmetric coplanar striplines," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2625-2630, 2007.
doi:10.1109/TMTT.2007.910067

9. Liu, G.-Q., L.-S. Wu, and W.-Y. Yin, "A compact microstrip rat-race coupler with modified Lange and T-shaped arms," Progress In Electromagnetics Research, Vol. 115, 509-523, 2011.
doi:10.2528/PIER11032003

10. Mo, T. T., Q. Xue, and C. H. Chan, "A broadband compact microstrip rat-race hybrid using a novel CPW inverter," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 1, 161-167, 2007.
doi:10.1109/TMTT.2006.888938

11. Kim, Y.-G., S.-Y. Song, and K. W. Kim, "A compact wideband ring coupler utilizing a pair of transitions for phase inversion," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 25-27, 2011.
doi:10.1109/LMWC.2010.2089438

12. Wang, T. and K. Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC’s," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 2, 198-206, 1999.
doi:10.1109/22.744295

13. Lin, F., Q.-X. Chu, and S. W. Wong, "Compact broadband microstrip rat-race couplers using microstrip/slotline phase inverters for arbitrary power-dividing ratios," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17–18, 2358-2364, 2012.
doi:10.1080/09205071.2012.734437

14. Ahn, H.-R., I.Wolff, and I.-S. Chang, "Arbitrary termination impedances, arbitrary power division, and small-sized ring hybrids," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 2241-2247, 1997.
doi:10.1109/22.643824

15. Heimer, B. R., L. Fan, and K. Chang, "Uniplanar hybrid couplers using asymmetrical coplanar striplines," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 2234-2240, 1997.
doi:10.1109/22.643822

16. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 798-804, 2004.
doi:10.1109/TMTT.2004.823541

17. Wu, Y., Z. Zhuang, L. Jiao, and Y. Liu, "A compact planar wide-band balun with high isolation based on coupled-line and composite right-left-handed transmission line," Microwave Opt. Technol. Lett., Vol. 58, No. 2, 372-376, 2016.
doi:10.1002/mop.29567

18. Joubert, J. and J. W. Odendaal, "Design of compact planar rat-race and branch-line hybrid couplers using polar curves," Microwave Opt. Technol. Lett., Vol. 57, No. 11, 2637-2640, 2015.
doi:10.1002/mop.29397

19. Mandal, M. K. and X. S. Sanyal, "Reduced-length rat-race coupler," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2593-2598, 2007.
doi:10.1109/TMTT.2007.910058

20. Chuang, M.-L., "Miniaturized ring coupler of arbitrary reduced size," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 1, 16-18, 2005.
doi:10.1109/LMWC.2004.840960

21. Ahn, H.-R. and S. Nam, "Compact microstrip 3-dB coupled-line ring and branch-line hybrids with new symmetric equivalent circuits," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 3, 1067-1078, 2013.
doi:10.1109/TMTT.2013.2241783

22. Kuo, J. T., J. S. Wu, and Y. C. Chiou, "Miniaturized rat race coupler with suppression of spurious passband," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 1, 46-48, 2007.
doi:10.1109/LMWC.2006.887254

23. Mondal, P. and A. Chakrabarty, "Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression," IET Microwave Antennas Propag., Vol. 3, No. 1, 109-116, 2009.
doi:10.1049/iet-map:20070202

24. Lai, C.-H. and T.-G. Ma, "Miniaturised rat-race coupler with second and third harmonic suppression using synthesised transmission lines," Electron. Lett., Vol. 49, No. 22, 1394-1396, 2013.
doi:10.1049/el.2013.2975

25. Nie, W., S. Luo, Y.-X. Guo, and Y. Fan, "Miniaturized rat-race coupler with harmonic suppression," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 11, 754-756, 2014.
doi:10.1109/LMWC.2014.2350253

26. Eccleston, K. W. and S. H. M. Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 10, 2119-2125, 2003.
doi:10.1109/TMTT.2003.817442

27. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

28. Kazerooni, M. and M. Aghalari, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 26, 87-96, 2011.
doi:10.2528/PIERL11071704

29. He, Q., Y. Wen, S. Chen, and K. Wang, "A compact uniplanar rat-race coupler with arbitrary power division ratio and harmonics suppression," Progress In Electromagnetics Research Letters, Vol. 52, 71-78, 2015.
doi:10.2528/PIERL15011604

30. Shie, C. I., J. C. Cheng, S. C. Chou, and Y. C. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 2981-2988, 2009.
doi:10.1109/TMTT.2009.2034219

31. Zysman, G. and A. K. Johnson, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 10, 753-759, 1969.
doi:10.1109/TMTT.1969.1127055

32. Pozar, D. M., Microwave Engineering, 4 Ed., John Wiley & Sons, New York, 2012.