Vol. 68
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-24
Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver
By
Progress In Electromagnetics Research C, Vol. 68, 201-209, 2016
Abstract
Integral equation domain decomposition method (IE-DDM) with an efficient higher-order method for the analysis of electromagnetic scattering from arbitrary three-dimensional conducting objects in a half-space is conducted in this letter. The original objects are decomposed into several closed subdomains. Due to the flexibility of DDM, it allows different basis functions and fast solvers to be used in different subdomains based on the property of each subdomain. Here, the higher-order vector basis functions defined on curvilinear triangular patches are used in each subdomain with the flexibility of order selection, which significantly reduces the number of unknowns. Then a novel hybrid solver is introduced where the adaptive cross approximation (ACA) and the half-space multilevel fast multipole algorithm (HS-MLFMA) are integrated seamlessly in the framework of IE-DDM. The hybrid solver enhances the capability of IE-DDM and realizes efficient solution for objects above, below, or even straddling the interface of a half-space. Numerical results are presented to validate the efficiency and accuracy of this method.
Citation
Lan-Wei Guo Jun Hu Wan Luo Lian-Ning Song Zai-Ping Nie , "Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver," Progress In Electromagnetics Research C, Vol. 68, 201-209, 2016.
doi:10.2528/PIERC16080408
http://www.jpier.org/PIERC/pier.php?paper=16080408
References

1. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990, Reprinted by IEEE Press, 1995.

2. Chen, Y. P., W. C. Chew, and L. Jiang, "A new Green’s function formulation for modeling homogeneous objects in layered medium," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4766-4776, Oct. 2012.
doi:10.1109/TAP.2012.2207332

3. Michalski, K. A. and J. R. Mosig, "Multilayered media Green’s functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, Mar. 1997.
doi:10.1109/8.558666

4. Chen, Y. P., W. C. Chew, and L. Jiang, "A novel implementation of discrete complex image method for layered medium Green’s function," IEEE Antennas Wireless Propag. Lett., Vol. 10, 419-422, 2011.
doi:10.1109/LAWP.2011.2152358

5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

6. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

7. Wang, J. and J. P. Webb, "Hierarchical vector boundary elements and p-adaption for 3-D electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1244-1253, Aug. 1997.

8. Jorgensen, E., O. S. Kim, P. Meincke, and O. Breinbjerg, "Higher order hierarchical discretization scheme for surface integral equations for layered media," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 764-772, Apr. 2004.
doi:10.1109/TGRS.2003.819881

9. Lai, B., X. An, H. B. Yuan, N. Wang, and C. H. Liang, "AIM analysis of 3D PEC problems using higher order hierarchical basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1417-1421, Apr. 2010.
doi:10.1109/TAP.2010.2041153

10. Zhao, R., et al., "Fast integral equation solution of scattering of multiscale objects by domain decomposition method with mixed basis functions," International Journal of Antennas and Propagation, 1-7, 2015.

11. Graglia, R. D., A. F. Peterson, and F. P. Andriulli, "Curl-conforming hierarchical vector bases for triangles and tetrahedra," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 950-959, Mar. 2011.
doi:10.1109/TAP.2010.2103012

12. Zha, L. P., Y. Q. Hu, and T. Su, "Efficient surface integral equation using hierarchical vector bases for complex EM scattering problems," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 952-957, Feb. 2012.
doi:10.1109/TAP.2011.2167932

13. Luo, W., Z. Nie, and Y. P. Chen, "Efficient higher-order analysis of electromagnetic scattering by objects above, below, or straddling a half-space," IEEE Antennas Wireless Propag. Lett., Vol. 15, 332-335, 2016.
doi:10.1109/LAWP.2015.2443874

14. Geng, N., A. Sullivan, and L. Carin, "Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1561-1573, Jul. 2000.
doi:10.1109/36.851956

15. Millard, X. and Q. H. Liu, "Simulation of near-surface detection of objects in layeredmedia by the BCGS-FFT method," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 2, 327-334, Feb. 2004.
doi:10.1109/TGRS.2003.817799

16. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898

17. Luo, W., Z. Nie, and Y. Chen, "Fast analysis of electromagnetic scattering from three-dimensional objects straddling the interface of a half space," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 7, 1205-1209, Jul. 2014.

18. Luo, W., Z. Nie, and Y. P. Chen, "A hybrid method for analyzing scattering from PEC bodies straddling a half-space interface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 474-477, 2015.
doi:10.1109/LAWP.2014.2368772

19. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3328-3338, Sep. 2011.
doi:10.1109/TAP.2011.2161542

20. Li, D., J. Wei, and J. F. Lee, "A new formulation discontinuous galerkin surface integral equation method for time-harmonic wave scattering problem," IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 195-196, Vancouver, BC, CA, 2015.

21. Zheng, K. L., H. X. Zhou, and W. Hong, "Integral equation-based nonoverlapping DDM using the explicit boundary condition," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2739-2745, Jun. 2015.
doi:10.1109/TAP.2015.2412145

22. Echeverri Bautista, M. A., F. Vipiana, M. A. Francavilla, J. A. Tobon Vasquez, and G. Vecchi, "A nonconformal domain decomposition scheme for the analysis of multiscale structures," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3548-3560, Aug. 2015.
doi:10.1109/TAP.2015.2430873

23. Peng, Z., R. Hiptmair, Y. Shao, and B. Mackie-Mason, "Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 210-223, Jan. 2016.
doi:10.1109/TAP.2015.2500908

24. Zhao, R., et al., "A hybrid solvers enhanced integral equation domain decomposition method for modeling of electromagnetic radiation," International Journal of Antennas and Propagation, 1-8, 2015.

25. Chen, Y. P., S. Sun, L. Jiang, and W. C. Chew, "A Calderon preconditioner for the electric field integral equation with layered medium Green’s function," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2022-2030, Apr. 2014.
doi:10.1109/TAP.2013.2297396

26. Donepudi, K. C., K. Gang, J. M. Song, and W. C. Chew, "Higher-order MoM implementation to solve integral equations," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1716-1719, Orlando, FL, USA, 1999.