Vol. 68
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-03
Efficiency Enhancement of Wireless Power Transfer System Using MNZ Metamaterials
By
Progress In Electromagnetics Research C, Vol. 68, 11-19, 2016
Abstract
In this paper, a simple approach for efficiency enhancement of a wireless power transfer system by using mu near zero (MNZ) type of metamaterial is proposed. A single slab containing one-sided periodic structures of 3×3 array of meander-line unit cell has been placed between transmitting and receiving coils in the wireless power transfer system. The presented metamaterial structure is less complex than other reported metamaterial structures in the area of wireless power transfer system. The simulation and measurement have been performed with and without metamaterial slab. Using metamaterial slab, the maximum efficiency has been obtained about 55.3%, i.e. an improvement of efficiency around 15.7% is obtained compared to a wireless power transfer system without metamaterials. Interestingly, the proposed wireless power transfer system shows a steady improvement of efficiency even if the distance between the transmitting and receiving coil is increased.
Citation
Tarakeswar Shaw Aritra Roy Debasis Mitra , "Efficiency Enhancement of Wireless Power Transfer System Using MNZ Metamaterials," Progress In Electromagnetics Research C, Vol. 68, 11-19, 2016.
doi:10.2528/PIERC16081101
http://www.jpier.org/PIERC/pier.php?paper=16081101
References

1. Tesla, N., "Apparatus for transmitting electrical energy,", US Patent, Serial No. 371817, 1–4, Dec. 1914.

2. Olvitz, L., D. Vinko, and T. Svedek, "Wireless power transfer for mobile phone charging device," MIPRO, Proc. of the 35th International Convention, 141-145, Opatija, Croatia, May 2012.
doi:10.1109/TCE.2015.7150569

3. Nguyen, V. T., S. H. Kang, J. H. Choi, and C. W. Jung, "Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications," IEEE Tran. Consum. Electron., Vol. 61, No. 2, 160-166, May 2015.
doi:10.1109/TIE.2009.2031184

4. Elliott, G. A. J., R. Stefan, G. A. Covic, and J. T. Boys, "Multiphase pickups for large lateral tolerance contactless power-transfer system," IEEE Tran. Ind. Electron., Vol. 57, No. 5, 1590-1598, May 2010.

5. Wang, G., W. Liu, M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, "A dual band wireless power and data telemetry for retinal prosthesis," Proc. IEEE EMBS Annual International Conference, 4392-4395, New York City, USA, Aug.–Sep. 2006.

6. Yan, G., D. Ye, P. Zan, K. Wang, and G. Ma, "Micro-robot for endoscope based on wireless power transfer," Proc. IEEE International Conference on Mechatron and Automat, 3577-3581, Harbin, China, Aug. 2007.

7. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging," Appl. Phys. Lett., Vol. 93, 23110, 1-3, Dec. 2008.
doi:10.1109/JPROC.2013.2245611

8. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: metamaterials and array of coupled resonators," Proc. IEEE, Vol. 101, No. 6, 1359-1368, Jun. 2013.

9. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, Jul. 2007.
doi:10.1080/09205071.2013.829392

10. Kim, Y. and S. Lim, "Compact magnetic coupled resonator with high efficiency during misaligned wireless power transmission," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1942-1948, Aug. 2013.

11. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," Proc. IEEE International Conference on Wireless Information Technology and System (ICWITS), 1-4, Honululu, HI, USA, Sep. 2010.

12. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, 205114, 1-10, May 2011.

13. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Appl. Phys. Lett., Vol. 98, 254101, 1-3, Jun. 2011.
doi:10.2528/PIER13061711

14. Fan, Y., L. Li, S. Yu, C. Zhu, and C. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, Aug. 2013.
doi:10.1109/TMTT.2014.2304927

15. Rajagopalan, A., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Tran. Microw. Theory Tech., Vol. 62, No. 4, 947-955, Apr. 2014.
doi:10.1049/iet-map.2013.0387

16. Park, J. H., B. C. Park, Y. H. Ryu, E. S. Park, and J. H. Lee, "Modified mu-zero resonator for efficient wireless power transfer," IET Microw. Ant. Propag., Vol. 8, No. 12, 912-920, Mar. 2014.
doi:10.1049/el.2014.1596

17. Kim, H. and C. Seo, "Highly efficient wireless power transfer using metamaterial slab with zero refractive property," Electronics Lett., Vol. 50, No. 16, 1158-1160, Jul. 2014.
doi:10.1109/TMTT.2016.2549526

18. Rodriguez, E. S. G., A. K. Ram Rakhyani, D. Schurig, and G. Lazzi, "Compact low frequency metamaterial design for wireless power transfer efficiency enhancement," IEEE Tran. Microw. Theory Techn., Vol. 64, No. 5, 1644-1654, May 2016.

19. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Padilla, "Extreme subwave length electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 1-5, Sep. 2011.
doi:10.1109/TMTT.2010.2065310

20. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TBCAS.2012.2192115

21. RamRakhyani, A. K. and G. Lazzi, "On the design of efficient multi-coil telemetry system for biomedical implant," IEEE Tran. Biomedical Circuits Sys., Vol. 7, No. 1, 11-23, Feb. 2013.