Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media

By Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Oe Guney
Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016


We present a method to improve the resolution of available hyperlenses in the literature. In this method, we combine the operation of hyperlens with the recently proposed plasmon injection scheme for loss compensation in metamaterials. Image of an object, which is otherwise not resolvable by the hyperlens alone, was reconstructed up to the minimum feature size of one seventh of the free-space wavelength.


Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Oe Guney, "Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media," Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016.


    1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

    2. Smith, D. R., D. Schurig, M. Rosenbluth, and S. Schultz, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.

    3. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Mater., Vol. 7, 435, 2008.

    4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.

    5. Jacob, Z., L. V. Alekseyev, and E. E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.

    6. Wood, B. and J. B. Pendry, "Directed sub-wavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.

    7. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction- limited objects," Science, Vol. 315, 1686, 2007.

    8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.

    9. Sun, J., M. Shalaev, and N. Litchinitster, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nature Commun., Vol. 6, 7201, 2015.

    10. Gwamuri, J., D. O. Guney, and J. M. Pearce, "Advances in plasmonic light trapping in thin-film solar photovoltaic devices," Solar Cell Nanotechnology, A. Tiwari, R. Boukherroub, and M. Sharon, eds., 243–270, Wiley, Beverly, 2013.

    11. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.

    12. Temnov, V. V., "Ultrafast acousto-magneto-plasmonics," Nat. Photonics, Vol. 6, 728, 2012.

    13. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203, 2013.

    14. Sadatgol, M., M. Rahman, E. Forati, M. Levy, and D. O. Guney, "Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet embedded-goldwires," J. Appl. Phys., Vol. 119, 103105, 2016.

    15. Abbe, E., "Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung," Arch. F. Mikr. Anat., Vol. 9, 413-420, 1873.

    16. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyberbolic metamaterials," Nat. Photonics, Vol. 7, 948, 2013.

    17. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013, 2015.

    18. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.

    19. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886, 2007.

    20. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Surface plasmon driven electric and magnetic resonators for metamaterials," Phys. Rev. B, Vol. 83, 045107, 2011.

    21. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.

    22. Sadatgol, M., S. K. Ozdemir, L. Yang, and 9D. O. Guney, "Plasmon injection to compensate and control losses in negative index metamaterials," Phys. Rev. Lett., Vol. 115, 35502, 2015.

    23. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, 735, 2010.

    24. Stockman, M. I., "Spaser action, loss compensation, and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.

    25. Adams, W., M. Sadatgol, X. Zhang, and D. O. Guney, "Bringing the ‘perfect lens’ into focus by near-perfect compensation of losses without gain media,", arXiv: 1607.07464.

    26. Chen, Y., Y.-C. Hsueh, M. Man, and K. J. Webb, "Enhanced and tunable resolution from an imperfect negative refractive index lens," J. Opt. Soc. Am. B, Vol. 33, 445, 2016.

    27. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.

    28. Palik, E. D., Handbook of Optical Constants of Solids III, Academic Press, 1998.

    29. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.

    30. Fienup, J. R., "Phase retrieval algorithms: A comparison," Appl. Opt., Vol. 21, 2758, 1982.