Vol. 70
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-10
Modal Analysis of Rectangular Waveguides with 2D Metamaterials
By
Progress In Electromagnetics Research C, Vol. 70, 165-173, 2016
Abstract
A new method to rapidly design 2D metamaterials for rectangular waveguides by rebuilding their dispersion properties is proposed. The Modal Expansion Theory (MET) is revisited for theoretical surfaces with fixed surface impedances ZS. Then, it is pursued for real dispersive anisotropic surfaces, which have surface impedances that are dependent on the frequency and the incidence angle. An algorithm which calculates the correct incidence angle of the guided electromagnetic mode at each frequency is presented. By including this algorithm in the MET and by combining it with a code based on the Finite Element Method (FEM) to calculate the surfaces impedances, dispersion diagrams of waveguides with real 2D anisotropic walls are correctly rebuilt. This is validated by comparing the results for two different metamaterials, corrugation- and T-structure, corrugations and metamaterials, with those obtained using a commercial software.
Citation
Benedikt Byrne, Nathalie Raveu, Nicolas Capet, Gwenn Le Fur, and Luc Duchesne, "Modal Analysis of Rectangular Waveguides with 2D Metamaterials," Progress In Electromagnetics Research C, Vol. 70, 165-173, 2016.
doi:10.2528/PIERC16092904
References

1. Pollock, J. G. and A. K. Iyer, "Below-cutoff propagation in metamaterial-lined circular waveguides," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 9, 3169-3178, September 2013.
doi:10.1109/TMTT.2013.2274780

2. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Transactions n Microwave Theory and Techniques, Vol. 64, No. 4, 1297-1305, April 2016.
doi:10.1109/TMTT.2016.2532872

3. Capolino, F., Applications of Metamaterials, CRC Press, ISBN 9781420054231, 2009.

4. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley- IEEE Press, ISBN 9780471761020, 2006.

5. Pollock, J. G. and A. K. Iyer, "Miniaturized circular-waveguide probe antennas using metamaterial liners," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 428-433, January 2015.
doi:10.1109/TAP.2014.2367551

6. Wu, Q., M. D. Gregory, D. H. Werner, P. L. Werner, and E. Lier, "Nature-inspired design of soft, hard and hybrid metasurfaces," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Toronto, Canada, July 2010.

7. Lier, E., "Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns," IEEE Antennas Propagat. Mag., Vol. 52, No. 2, 31-39, April 2010.
doi:10.1109/MAP.2010.5525564

8. Lier, E. and R. K. Shaw, "Design and simulation of metamaterial-based hybrid-mode horn antennas," Electron. Lett., Vol. 44, No. 25, 1444-1445, December 2008.
doi:10.1049/el:20082639

9. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetics and their application to antenna design," Proc. 23rd Eur. Microw. Conf., 30-33, September 1993.

10. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 1153-1162, April 2016.
doi:10.1109/TMTT.2016.2533387

11. Geuzaine, C. and J.-F. Remacle, "Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," International Journal for Numerical Methods in Engineering, Vol. 79, No. 11, 1309-1331, 2009.
doi:10.1002/nme.2579

12. Jin, J.-M., "The finite element method in electromagnetics," Wiley-IEEE Press, ISBN 978-1-118-57136-1, 2014.