Vol. 72
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-05
Ultra-Small Single-Negative Metamaterial Insulator for Mutual Coupling Reduction of High-Profile Monopole Antenna Array
By
Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017
Abstract
A novel single-negative magnetic (SNG) metamaterial (MTM) insulator is designed to reduce mutual coupling between high-profile monopole antennas. As a kind of metamaterials, the proposed SNG MTM-resonator utilized concentric rings embedded complementary metal structures. Then, an insulator is achieved with a highly compact structure. The band-gap of the insulator is attributed to the negative permeability of the magnetic resonance. A well-engineered MTM-resonator is then embedded in between a high-profile monopole antenna array for coupling reduction. The antenna array is designed, fabricated, and measured. Both numerical and experimental results indicate a mutual coupling reduction of more than 17 dB. The 20 dB isolation bandwidth about 16% is obtained. The proposed prescription with electrically small dimensions and high decoupling efficiency opens an avenue to new types of high-profile antennas with super performances.
Citation
Yujie Qiu Lin Peng Xing Jiang Zhuzhu Sun Shaoyu Tang , "Ultra-Small Single-Negative Metamaterial Insulator for Mutual Coupling Reduction of High-Profile Monopole Antenna Array," Progress In Electromagnetics Research C, Vol. 72, 197-205, 2017.
doi:10.2528/PIERC16100803
http://www.jpier.org/PIERC/pier.php?paper=16100803
References

1. Hansen, R. C., Phased Array Antennas, Ch. 7, Wiley, New York, 1998.
doi:10.1002/0471224219

2. Cai, T., G.-M. Wang, J.-G. Liang, and Y.-Q. Zhuang, "Application of ultra-compact single negative waveguide metamaterial for a low mutual coupling patch antenna array design," Chin. Phys. Lett., Vol. 31, No. 8, 0841011-0841015, 2014.
doi:10.1088/0256-307X/31/8/084101

3. Xu, H. X., G.-M. Wang, and M.-Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magn., Vol. 49, No. 4, 1526-1529, 2013.
doi:10.1109/TMAG.2012.2230272

4. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and H.-Y. Zeng, "Ultra-small single-negative electric metamaterial for electromagnetic coupling reduction of microstrip antenna array," Opt. Exp., Vol. 20, No. 20, 21968-21976, 2012.
doi:10.1364/OE.20.021968

5. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2894-2910, 2007.
doi:10.1109/TAP.2010.2052560

6. Sarabandi, K. and Y. J. Song, "Subwavelength radio repeater system utilizing miniaturized antennas and metamaterials channel isolator," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2683-2691, 2011.
doi:10.1109/TAP.2011.2152320

7. Jiang, X., Y.-J. Qiu, and L. Peng, "Novel metamaterial insulator for compact array isolation," International Conference on Signal Processing, Communications and Computing, 649-652, Guilin, Guangxi, CN, Aug. 2014.

8. Buell, K., H. Mosallaei, and K. Sarabandi, "Metamaterial insulator enabled superdirective array," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1074-1085, 2007.
doi:10.1109/TAP.2007.893373

9. Hsu, C. C., K. H. Lin, and H. L. Su, "Implementation of broadband isolator using metamaterialinspired resonators and a T-shaped branch for MIMO antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3936-3939, 2011.
doi:10.1109/TAP.2011.2163741

10. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

11. Assimonis, S. D., T. V. Yioultsis, and C. S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Trans. Magn., Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

12. Chung, Y., et al., "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 4-6, 2004.
doi:10.1109/LMWC.2003.821501

13. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

14. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phy. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

15. Imbert, M., P. J. Ferrer, J. M. Gonzalez-Arbesu, and J. Romeu, "Assessment of the performance of a metamaterial spacer in a closely spaced multiple-antenna system," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 720-723, 2012.
doi:10.1109/LAWP.2012.2205210

16. Dadgarpour, A., B. Zarghooni, and T. A. Denidni, "Mutual-coupling suppression for 60GHz MIMO antenna using metamaterials," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015.

17. Ferrer, P. J., J. M. Gonzalez-Arbesu, and J. Romeu, "Bidirectional metamaterial separator for compact antenna systems," IEEE Antennas and Propagation Society International Symposium, 2007.