Vol. 71
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-02-09
Ultra-Compact Microstrip Antenna Array and Miniaturized Feeding Network
By
Progress In Electromagnetics Research C, Vol. 71, 111-122, 2017
Abstract
In this paper, an interdigital resonator that can greatly decrease mutual coupling between adjacent patches is proposed to realize an ultra-compact microstrip antenna array operating in 2.4 GHz wireless communication system. Due to its remarkable performance of decoupling, the edge to edge distance between adjacent patches can be reduced to 0.08λ0 and even less. Meanwhile, a miniaturized feeding network, which is composed of a CRLH-TL-based phase shifter and T-junction-based power divider, is used to feedthe compact antenna array. The simulation results show that the proposed antenna array has an impedance bandwidth of 8.34%. We fabricate the antenna array to verify its performance. The experimental results are in good agreements with the simulations. Compared to the published designs, the proposed antenna array hasanultra-compact structure and hence can be used in space limited communication systems.
Citation
Wei Qiao, Xi Gao, Xingyang Yu, Si Min Li, Yan-Nan Jiang, and Hui-Feng Ma, "Ultra-Compact Microstrip Antenna Array and Miniaturized Feeding Network," Progress In Electromagnetics Research C, Vol. 71, 111-122, 2017.
doi:10.2528/PIERC16110602
References

1. Ouyang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310

2. Sarkar, D., A. Singh, K. Saurav, and K. V. Srivastava, "Four-element quad-band multipleinput-multiple-output antenna employing split-ring resonator and inter-digital capacitor," IET Microwaves, Antennas and Propagation, Vol. 9, No. 13, 1453-1460, 2015.
doi:10.1049/iet-map.2015.0189

3. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

4. Bernety, H. M. and A. B. Yakovlev, "Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1554-1563, 2015.
doi:10.1109/TAP.2015.2398121

5. Xu, H. X., G. M. Wang, M. Q. Qi, and H. Y. Zeng, "Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array," Optics Express, Vol. 20, 21968-21976, Sep. 2012.
doi:10.1364/OE.20.021968

6. Al-Hasan, M. J., T. A. Denidni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 823-828, 2015.
doi:10.1109/TAP.2014.2381229

7. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

8. Park, J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 9, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313

9. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

10. Salehi, M. and A. Tavakoli, "A novel low mutual coupling microstrip antenna array design using defected ground structure," International Journal of Electronics and Communications (AEU), Vol. 60, No. 10, 718-723, 2006.
doi:10.1016/j.aeue.2005.12.009

11. Qian, K. and D. Gan, "Compact tunable network for closely spaced antennas with high isolation," Microwave and Optical Technology Letters, Vol. 58, No. 1, 65-69, 2016.
doi:10.1002/mop.29495

12. Velez, P., J. Bonache, and F. Martın, "Dual and broadband power dividers at microwave frequencies based on composite right/left handed (CRLH) lattice networks," Photonics and Nanostructures — Fundamentals and Applications, Vol. 12, No. 4, 269-278, 2014.
doi:10.1016/j.photonics.2014.05.006

13. Bemani, M. and S. Nikmehr, "Nonradiating arbitrary dual-band equal and unequal 1 : 4 series power divider based on CRLH-TL structures," IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, 1223-1234, 2015.
doi:10.1109/TIE.2013.2258297

14. Ren, X., K. Song, F. Zhang, and B. Hu, "Miniaturized gysel power divider based on composite right/left-handed transmission lines," IEEE Microwave Theory and Wireless Component Letters, Vol. 25, No. 1, 22-24, 2015.
doi:10.1109/LMWC.2014.2365747

15. Ghosh, J., S. Ghosh, D. Mitra, and S. R. B. Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202

16. Blanch, J., J. Romeu, and I. Cordella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

17. Zhao, L. and K. Wu, "A dual-band coupled resonator decoupling network for two coupled antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 2843-2850, 2015.
doi:10.1109/TAP.2015.2421973

18. Lin, X. Q., D. Bao, H. F. Ma, and T. J. Cui, "Novel composite phase-shifting transmission-line and its application in the design of antenna array," IEEE Transactions on Antenna and Propagation, Vol. 58, No. 2, 375-380, 2010.
doi:10.1109/TAP.2009.2037764

19. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1159-1166, 2004.
doi:10.1109/TAP.2004.827249

20. Ludwing, R. and G. Bogdanov, RF Circuit Design: Theory and Applications Chinese Simplified Language Edition, 2nd Ed., Publishing House of Electronics Industry, Beijing, 2013.

21. Cui, W., R. Wang, H. Zhang, J. Li, T. Hu, and Y. Liu, Electromagnetic Metamaterials and Applications, 2nd Ed., National Defense Industry Press, Beijing, 2014.

22. Alley, G. D., "Interdigital capacitors and their application to lumped-element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, No. 12, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407

23. Qiao, W., X. Gao, X. Yu, Y. Jiang, X. Yu, and W. Cao, "Compact power divider based on composite right/left-handed transmission line," The 11th International Symposium on Antennas, Propagation and EM Theory, to be published.