Vol. 71

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Low Frequency Behavior of CVD Graphene from DC to 40 GHz

By Rong Wang, Salahuddin Raju, Mansun Chan, and Li Jun Jiang
Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017


Electromagnetic behaviour of chemical vapor deposition (CVD) graphene at low frequencies is still a mystery. No conclusion is made from the experimental point of views. Here, we systematically investigate the electromagnetic response of graphene at microwave frequencies, which are from direct current (DC) to 40 GHz. Both a coplanar transmission line embedded with different-sized graphene akes of 48 × 48 and 48 × 240 um2 and a microwave termination based on the graphene sheet of 6 × 6 mm2 are manufactured through the chemical vapor deposition (CVD) and standard microfabrication procedures. We conclude that graphene behaves as a frequency-independent surface resistance at the microwave frequencies, which is consistent with the theoretical model by rigorously solving the Maxwell's equations with the Kubo formula. The work offers a simple, accurate, and conclusive electromagnetic analysis to graphene and thus is of great help to design graphene incorporated microwave components and devices.


Rong Wang, Salahuddin Raju, Mansun Chan, and Li Jun Jiang, "Low Frequency Behavior of CVD Graphene from DC to 40 GHz ," Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017.


    1. Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Vol. 438, No. 7065, 197-200, 2005.

    2. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nat. Mater., Vol. 6, No. 3, 183-191, 2007.

    3. Du, X., I. Skachko, A. Barker, and E. Y. Andrei, "Approaching ballistic transport in suspended graphene," Nat. Nanotechnol., Vol. 3, No. 8, 491-495, 2008.

    4. Neto, A. C., F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys., Vol. 81, No. 1, 109-162, 2009.

    5. Geim, A. K., "Graphene: Status and prospects," Science, Vol. 324, No. 5934, 1530-1534, 2009.

    6. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," J. Phys.: Condens. Matter, Vol. 19, No. 2, 026222, 2006.

    7. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, 2008.

    8. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 747-757, 2008.

    9. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Phys. Rev. B, Vol. 80, No. 24, 245435, 2009.

    10. Mikhailov, S. A. and K. Ziegler, "New electromagnetic mode in graphene," Phys. Rev. Lett., Vol. 99, No. 1, 016803, 2007.

    11. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, and S. Y. Choi, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nat. Mater., Vol. 11, No. 11, 936-941, 2012.

    12. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nat. Photonics, Vol. 5, No. 7, 411-415, 2011.

    13. Yao, Y., M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, "Broad electrical tuning of graphene-loaded plasmonic antennas," Nano Lett., Vol. 13, No. 3, 1257-1264, 2013.

    14. Awan, S. A., A. Lombardo, A. Colli, G. Privitera, T. S. Kulmala, J. M. Kivioja, M. Koshino, and A. C. Ferrari, "Transport conductivity of graphene at RF and microwave frequencies," 2D Mater., Vol. 3, No. 1, 015010, 2016.

    15. Chang, Y. C., C. H. Liu, C. H. Liu, S. Zhang, S. R. Marder, E. E. Narimanov, Z. Zhong, and T. B. Norris, "Realization of mid-infrared graphene hyperbolic metamaterials," Nat. Commun., Vol. 7, 10568, 2016.

    16. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics Nanostruct. Fundam. Appl., Vol. 10, No. 4, 353-358, 2012.

    17. Horng, J., C. F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, and M. F. Crommie, "Drude conductivity of Dirac fermions in graphene," Phys. Rev. B, Vol. 83, No. 16, 165113, 2011.

    18. Abedinpour, S. H., G. Vignale, A. Principi, M. Polini, W. K. Tse, and A. H. MacDonald, "Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets," Phys. Rev. B, Vol. 84, No. 4, 045429, 2011.

    19. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, and E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, No. 5932, 1312-1314, 2009.

    20. Ferrari, A. C., J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett., Vol. 97, No. 18, 187401, 2006.

    21. Blake, P., E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett., Vol. 91, No. 6, 063124, 2007.