Vol. 73
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-04
Broadband Perfect Metamaterial Absorber on Thin Substrate for X-Band and Ku-Band Applications
By
Progress In Electromagnetics Research C, Vol. 73, 9-16, 2017
Abstract
A broadband Perfect Metamaterial Absorber (PMA) on FR-4 Epoxy substrate for X-band and Ku-Band applications is proposed. The unit cell structure is composed of rectangular patches of appropriate shapes and orientation on top of the metal-backed dielectric substrate having a thickness of 2.7 mm (0.16λL). The relative absorption bandwidth is 79% (more than 85% absorption) covering the entire X-band and the Ku-Band of the microwave frequencies. The surface current distributions of the top and bottom planes have been analyzed to elaborate the absorption mechanism of the structure. The broadband characteristics of the design support its claim of being useful to a wide range of applications in both commercial and research sectors. Such applications include military and stealth devices, thermal sensors and electronic-cloaking devices.
Citation
Gobinda Sen Sk. Nurul Islam Amartya Banerjee Santanu Das , "Broadband Perfect Metamaterial Absorber on Thin Substrate for X-Band and Ku-Band Applications," Progress In Electromagnetics Research C, Vol. 73, 9-16, 2017.
doi:10.2528/PIERC17011101
http://www.jpier.org/PIERC/pier.php?paper=17011101
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, May 2008.
doi:10.1103/PhysRevLett.100.207402

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, April 2001.

3. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, October 2000.

4. Bakir, M., et al., "Tunable perfect metamaterial absorber and sensor applications," Journal of Materials Science: Materials in Electronics, Vol. 27, 12091-12099, 2016.
doi:10.1007/s10854-016-5359-7

5. Dincer, F., et al., "Multi-band polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, 1650095-9, 2016.
doi:10.1142/S0217984916500950

6. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401

7. Singh, P., S. Kabiri Ameri, L. Chao, M. N. Afsar, and S. Sonkusale, "Broadband millimeterwave metamaterial absorber based on embedding of dual resonators," Progress In Electromagnetics Research, Vol. 142, 625-638, 2013.
doi:10.2528/PIER13070209

8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, June 2006.
doi:10.1126/science.1125907

9. Unal, E., et al., "Tunable perfect metamaterial absorber design using the golden radio and energy harvesting and sensor applications," Journal of Materials Science: Materials in Electronics, 10.1007/s 10854-015-3642-7.

10. Dincer, F., O. Akgol, M. Karaaslan, E. Unal, and C. Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.
doi:10.2528/PIER13111404

11. Chambers, B. and A. Tennant, "Optimized design of Jaumann radar absorbing materials using a genetic algorithm," IEE Proc. Radar Sonar and Navig., Vol. 143, No. 1, February 1996.
doi:10.1049/ip-rsn:19960316

12. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, May 2010.
doi:10.1109/TAP.2010.2044329

13. Noor, A. and Z. Hu, "Metamaterial dual-polarized resistive Hilbert curve array radar absorber," IET Microw. Antennas Propag., Vol. 4, No. 6, 667-673, 2010.
doi:10.1049/iet-map.2009.0047

14. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1063/1.3692178

15. Shen, Y., Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, "An extremely wideband and lightweight metamaterial absorber," Journal of Applied Physics, Vol. 117, 224503, 2015.
doi:10.1063/1.4922421

16. Li, S.-J., X.-Y. Cao, J. Gao, T. Liu, Y.-J. Zheng, and Z. Zhang, "Analysis and design of threelayer perfect metamaterial-inspired absorber based on double split-serration-rings structure," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, November 2015.

17. Sen, G., A. Banerjee, Sk. Nurul Islam, and S. Das, "Ultra-thin miniaturized metamaterial perfect absorber for X-band application," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2367-2370, October 2016.
doi:10.1002/mop.30048

18. Qiu, K. and S. Feng, "A novel metamaterial absorber with perfect wave absorption obtained by layout design," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 4, 523-535, 2016.
doi:10.1080/09205071.2015.1134358

19. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2646-2653, October 2010.
doi:10.1109/TMTT.2010.2065310

20. Bayatpur, F. and K. Sarabandi, "Tuning performance of metamaterial-based frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, February 2009.
doi:10.1109/TAP.2008.2011404