Vol. 76
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-18
A Two-Stage Approach for Frequency Response Modeling and Metamaterial Rapid Design
By
Progress In Electromagnetics Research C, Vol. 76, 11-22, 2017
Abstract
We introduce a novel two-stage approach for rapid design of massive metamaterials (MTMs), where performances of thousands of microstructures require evaluation. In Stage I, an equivalent circuit model is synthesized via rational function modeling to represent the frequency response of MTMs microstructures. In Stage II, Gaussian process (GP) regression models are unitized to build the relation between the physical setting of the microstructure, including geometric design variables and incident angles of electromagnetic (EM) waves and the representing parameters of the equivalent circuit model. As a consequence, the mapping from the microstructure physical parameters to the frequency response is easy to achieve and with high accuracy. We offer two metamaterial prototypes to illustrate that the proposed approach allows high efficiency in facilitating the design of massive MTMs. The experimental results demonstrate that our method is no longer limited by the complexity of microstructures and the spatial dispersion, induced by the variation of incident angle. We compare the accuracy of predicted responses against the reference data, and both examples yield average RMSE less than 0.05, which meets the requirements for many MTMS engineering applications.
Citation
Xiao Guo Chunlin Ji Ruo Liu Tao Tang , "A Two-Stage Approach for Frequency Response Modeling and Metamaterial Rapid Design," Progress In Electromagnetics Research C, Vol. 76, 11-22, 2017.
doi:10.2528/PIERC17011108
http://www.jpier.org/PIERC/pier.php?paper=17011108
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-9, Apr. 6, 2001.

2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Properties and Applications, J. Wiley, Hoboken, NJ, ISBN: 978-0471744757, 2005.
doi:10.1002/0471744751

3. Marques, R., F. Mart´ın, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, ISBN: 978-0-471-74582-2, 2011.

4. Cui, T. J., D. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, New York, NY, ISBN: 978-1441905734, 2014.

5. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-9, 2009.

6. Liu, B. and C. Ji, "Bayesian nonparametric modeling for rapid design of metamaterial microstructures," International Journal of Antennas & Propagation, Vol. 2014, 187-187, 2014.

7. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2001.
doi:10.1103/PhysRevB.65.195104

8. Chen, X., T. M. Grzegorczyk, B. I. Wu, P. J. Jr, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E Statistical Nonlinear & Soft Matter Physics, Vol. 70, 811-811, 2004.

9. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, No. 19, 195328-1-195328-8, 2008.
doi:10.1103/PhysRevB.77.195328

10. Rahm, M., D. Roberts, J. Pendry, and D. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Optics Express, Vol. 16, 11555-11567, 2008.
doi:10.1364/OE.16.011555

11. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photonics and Nanostructures-fundamentals and Applications, Vol. 6, 87-95, 2008.

12. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

13. Koschny, T., P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Physical Review B, Vol. 71, 5105, 2005.

14. Li, J. and J. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

15. Jiang, W. X., J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Physical Review E, Vol. 77, 066607, 2008.

16. Bilotti, F., A. Toscano, L. Vegni, and K. Aydin, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory & Techniques Mtt, Vol. 55, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

17. Chen, H., L. Ran, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Equivalent circuit model for left-handed metamaterials," Journal of Applied Physics, Vol. 100, 024915-024915-6, 2006.
doi:10.1063/1.2219986

18. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Transactions on Microwave Theory & Techniques, Vol. 54, 2665-2674, 2006.
doi:10.1109/TMTT.2006.872949

19. Antonini, G., "SPICE equivalent circuits of frequency-domain responses," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 502-512, 2003.
doi:10.1109/TEMC.2003.815528

20. Majumdar, P., Z. Zhao, Y. Yue, C. Ji, and R. Liu, "Equivalent circuit model of cross and circular ring FSS using vector fitting," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 1042-1045, 2014.
doi:10.1109/APCAP.2014.6992686

21. Majumdar, P., Z. Zhao, Y. Yue, C. Ji, and R. Liu, "Equivalent circuit model of different configurations of loop elements using vector-fitting," PIERS Proceedings, 2395-2399, Guangzhou, Aug. 25–28, 2014.

22. Williams, C. K. and C. E. Rasmussen, Gaussian Processes for Machine Learning, MIT Press, ISBN 0-262-18253-X, 2006.

23. Semlyen, A. and B. Gustavsen, "Vector fitting by pole relocation for the state equation approximation of nonrational transfer matrices," Circuits, Systems and Signal Processing, Vol. 19, 549-566, 2000.
doi:10.1007/BF01271288

24. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, Vol. 14, 1052-1061, 1999.
doi:10.1109/61.772353

25. Munk, B., Frequency Selective Surfaces: Theory and Design, J. Wiley, Hoboken, NJ, ISBN 978-0- 471-37047-5, 2005.