Vol. 73
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-11
Precise Finite Difference Analysis of Lorentz Force Acting on Metal Nanoparticle Irradiated with Light
By
Progress In Electromagnetics Research C, Vol. 73, 81-86, 2017
Abstract
A finite difference method in the frequency domain is evaluated to clarify characteristics of the Lorentz force exerted on a metal nanoscale particle by light irradiation. Numerical results are compared with exact values obtained from Mie theory to show that applying a smoothing algorithm to the surface of a nanoparticle increases the accuracy of the simulation. Analysis of the Lorentz force exerted between two spheres aligned closely indicates that strong forces cause the spheres to attract each other at the plasmon resonant frequency. It was also noticed that application of the smoothing algorithm was indispensable in order to achieve the above result.
Citation
Takashi Yamaguchi Mizue Ebisawa Shinichiro Ohnuki , "Precise Finite Difference Analysis of Lorentz Force Acting on Metal Nanoparticle Irradiated with Light," Progress In Electromagnetics Research C, Vol. 73, 81-86, 2017.
doi:10.2528/PIERC17020202
http://www.jpier.org/PIERC/pier.php?paper=17020202
References

1. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162

2. Guoa, L., J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, and D. H. Kim, "Strategies for enhancing the sensitivity of plasmonic nanosensors," Nano Today, Vol. 10, No. 2, 213-239, 2015.
doi:10.1016/j.nantod.2015.02.007

3. Hsu, C. W., B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, and M. Solijaci, "Transparent displays enabled by resonant nanoparticle scattering," Nat. Commun., Vol. 5, 2014.

4. Colomban, P., "The use of metal nanoparticles to produce yellow, red and iridescent colour, from Bronze Age to Present Times in lustre pottery and glass: Solid state chemistry, spectroscopy and nanostructure," J. Nano Res., Vol. 8, 109-132, 2009.
doi:10.4028/www.scientific.net/JNanoR.8.109

5. Blosi, M., S. Albonetti, F. Gatti, G. Baldi, and M. Dondi, "Au-Ag nanoparticles as red pigment in ceramic inks for digital decoration," Dyes Pigm., Vol. 94, 355-362, 2012.
doi:10.1016/j.dyepig.2012.01.006

6. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, Germany, 2008.

7. Elimelech, M., X. Jia, J. Gregory, and R. Williams, "Particle Deposition and Aggregation: Measurement, Modelling and Simulation," Butterworth-Heinemann, 1995.

8. Burns, M. M., J. M. Fournier, and J. A. Golovchenko, "Optical binding," Phys. Rev. Lett., Vol. 63, No. 12, 1233-1236, 1989.
doi:10.1103/PhysRevLett.63.1233

9. Kimura, K., "Photoinduced coagulation of Au nanocolloids," J. Phys. Chem., Vol. 98, No. 8, 2143-2147, 1994.
doi:10.1021/j100059a029

10. Kimura, K., "Photoenhanced van der Waals attractive force of small metallic particles," J. Phys. Chem., Vol. 98, No. 46, 11997-12002, 1994.
doi:10.1021/j100097a027

11. Chen, H., S. Liu, J. Zi, and Z. Lin, "Fano resonance-induced negative optical scattering force on plasmonic nanoparticles," ACS Nano, Vol. 9, No. 2, 1926-1935, 2015.
doi:10.1021/nn506835j

12. Chen, H., C. Liang, S. Liu, and Z. Lin, "Chirality sorting using two-wave-interference induced lateral optical force," Phys. Rev. A, Vol. 93, No. 5, 053833, 2016.
doi:10.1103/PhysRevA.93.053833

13. Chen, H., Y. Jiang, N. Wang, W. Lu, S. Liu, and Z. Lin, "Lateral optical force on paired chiral nanoparticles in linearly polarized plane waves," Opt. Lett., Vol. 40, No. 23, 5530-5533, 2015.
doi:10.1364/OL.40.005530

14. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, NY, USA, 1941.

15. Fujii, M., "Radius-dependent binding or repelling forces exerted on metal nano-sphere clusters by infrared-induced plasmonic resonance," Opt. Commun., Vol. 285, No. 21–22, 4553-4557, 2012.
doi:10.1016/j.optcom.2012.06.075

16. Shalin, A. S., P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, "Nano-opto-mechanical effects in plasmonic waveguides," Laser. Photon. Rev., Vol. 8, No. 1, 131-136, 2014.
doi:10.1002/lpor.201300109

17. Xiao, J. J. and C. T. Chan, "Calculation of the optical force on an infinite cylinder with arbitrary cross section by the boundary element method," J. Opt. Soc. Am. B, Vol. 25, No. 9, 1553-1561, 2008.
doi:10.1364/JOSAB.25.001553

18. Sikora, J., M. Panczyk, and P. Wieleba, "Hybrid boundary element method applied for diffusion tomography problems," Computer Vision in Robotics and Industrial Applications, 197-229, World Scientific, 2014.

19. Chaumet, P. C. and A. Rahmani, "Electromagnetic force and torque on magnetic and negative-index scatters," Opt. Express, Vol. 17, No. 4, 2224-2234, 2009.
doi:10.1364/OE.17.002224

20. Demir, V., "Graphics processor unit (GPU) acceleration of finite-difference frequency-domain (FDFD) method," Progress In Electromagnetics Research M, Vol. 23, 29-51, 2012.
doi:10.2528/PIERM11090909

21. Deinega, A. and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finitedifference time-domain method," Opt. Lett., Vol. 32, No. 23, 3429-3431, 2007.
doi:10.1364/OL.32.003429

22. Kottke, C., A. Farjadpour, and S. G. Johnson, "Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods," Phys. Rev. E, Vol. 77, 036611, 2008.
doi:10.1103/PhysRevE.77.036611

23. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt., Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271

24. Yamaguchi, T., "Finite-difference time-domain analysis of Hemi-Teardrop-shaped near-field optical probe," Electron. Lett., Vol. 44, No. 4, 310-311, 2008.
doi:10.1049/el:20080068

25. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

26. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum," ETNA, Vol. 1, 11-32, 1993.