Vol. 73
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-04-11
Inkjet Printing of a 20 GHz Coplanar Waveguide Monopole Antenna Using Copper Oxide Nanoparticles on Flexible Substrates: Effect of DROP Spacing on Antenna Performance
By
Progress In Electromagnetics Research C, Vol. 73, 87-95, 2017
Abstract
Coplanar monopole antennas printed using copper oxide nanoparticles on flexible substrates are characterized in order to study the effect of the ink drop spacing on the antenna parameters. Polyethylene Terephthalate and Epson paper were the chosen flexible substrates, and the antennas were designed to operate at 20 GHz. A maximum conductivity of 2.8×107 Ω−1m−1 was obtained for the films printed on Polyethylene Terephthalate using a drop spacing of 20 μm. The corresponding antenna achieved a gain and an efficiency of 1.82 dB and 97.6%, respectively. Experiments showed that smaller drop spacings lead to bulging of the printed lines while the antenna performance worsens for longer ones. At the same drop spacing, antennas printed on Epson paper substrate showed a -10 dB return loss bandwidth which extended from 17.9 GHz to 23.3 GHz, leading to a fractional bandwidth of 26.0%.
Citation
Shaimaa Mohassieb Khaled Kirah Edgar Dorsam Ahmed Saad G. Khalil Hadia El-Hennawy , "Inkjet Printing of a 20 GHz Coplanar Waveguide Monopole Antenna Using Copper Oxide Nanoparticles on Flexible Substrates: Effect of DROP Spacing on Antenna Performance," Progress In Electromagnetics Research C, Vol. 73, 87-95, 2017.
doi:10.2528/PIERC17020807
http://www.jpier.org/PIERC/pier.php?paper=17020807
References

1. Ciftci, T., B. Karaosmanoglu, and O. Ergul, "Low-cost inkjet antennas for RFID applications," 2015 Radio and Antenna Days of the Indian Ocean (RADIO), Belle Mare, 1-2, Belle Mare, Mauritius, 2015.

2. Kang, H., H. Park, Y. Park, M. Jung, B. C. Kim, G. Wallace, and G. Choa, "Fully roll-toroll gravure printable wireless (13.56 MHz) sensors-signage tags for smart packaging," Scientific Reports, Vol. 4, No. 5387, 2014.

3. Wegener, M., D. Spiehl, H. M. Sauer, F. Mikschl, X. Liu, N. Kolpin, M. Schmidt, M. P. M. Jank, E. Dorsam, and A. Roosen, "Flexographic printing of nanoparticulate tin-doped indium oxide inks on PET foils and glass substrates," Journal of Materials Science, Vol. 51, No. 9, 4588-4600, 2016.
doi:10.1007/s10853-016-9772-3

4. Willmann, J., D. Stocker, and E. Dorsam, "Characteristics and evaluation criteria of substratebased manufacturing. Is roll-to-roll the best solution for printed electronics?," Organic Electronics, Vol. 17, No. 7, 1631-1640, 2014.
doi:10.1016/j.orgel.2014.04.022

5. Yousef, S. and A. Mohamed, "Mass production of CNTs using CVD multi-quartz tubes," Journal of Mechanical Science and Technology, Vol. 30, No. 11, 5135-5141, 2016.
doi:10.1007/s12206-016-1031-7

6. Komoda, N., M. Nogi, K. Suganuma, K. Kohno, Y. Akiyama, and K. Otsuka, "Printed silver nanowire antennas with low signal loss at high-frequency radio," Nanoscale, Vol. 4, 3148-3153, 2012.
doi:10.1039/c2nr30485f

7. Lu, J. D., P. J. Deng, L. H. Li, and W. W. Li, "The research on gravure printing RFID antenna," Advanced Materials Research, Vol. 1033–1034, 1142-1148, 2014.
doi:10.4028/www.scientific.net/AMR.1033-1034.1142

8. Bornemann, N., H. M. Sauer, and E. Dorsam, "Gravure printed ultrathin layers of small-molecule semiconductors on glass," Journal of Imaging Science and Technology, Vol. 55, No. 4, 2011.
doi:10.2352/J.ImagingSci.Technol.2011.55.4.040201

9. Spurek, J., J. Velim, M. Cupal, Z. Raida, J. Prasek, and J. Hubalek, "Slot loop antennas printed on 3D textile substrate," 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Gdansk, Poland, May 9–11, 2016.

10. Dokic, M., V. Radonic, A. Pletersek, U. Kavcic, V. Crnojevic-Bengin, and T. Muck, "Comparison between the characteristics of screen and flexographic printing for RFID applications," Journal of Microelectronics, Electronic Components and Materials, Vol. 45, No. 1, 3-11, 2015.

11. Kim, S., M. M. Tentzeris, and S. Nikolaou, "Wearable biomonitoring monopole antennas using inkjet printed electromagnetic band gap structures," 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, Mar. 26–Mar. 30, 2012.

12. Hassan, A., S. Ali, J. Bae, and C. H. Lee, "All printed antenna based on silver nanoparticles for 1.8 GHz applications," Applied Physics A, Vol. 122, 768, 2016.
doi:10.1007/s00339-016-0286-2

13. Khonsari, Z., T. Bjorninen, M. M. Tentzeris, L. Sydanheimo, and L. Ukkonen, "2.4 GHz inkjetprinted RF energy harvester on bulk cardboard substrate," IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, Jan. 25–Jan. 28, 2015.

14. Roushdy, M. M. and H. F. Hammad, "Inkjet printed wearable Hilbert monopole fractal antenna optimized for BAN systems," 33rd National Radio Science Conference (NRSC), Aswan, Egypt, 2016.

15. http://www.fujifilmusa.com/press/news/display news?newsID=880813,.

16. Soltman, D. and V. Subramanian, "Inkjet-printed line morphologies and temperature control of the coffee ring effect," Langmuir, Vol. 24, No. 5, 2224-2231, 2008.
doi:10.1021/la7026847

17. Poozesh, S., K. Saito, N. K. Akafuah, and J. Grana-Otero, "Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology," Applied Physics A, Vol. 122, No. 110, 2016.

18. Albrecht, A., A. Rivadeneyra, A. Abdellah, P. Luglia, and J. F. Salmerona, "Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns," Journal of Materials Chemistry C, Vol. 4, 3546-3554, 2016.
doi:10.1039/C6TC00628K

19. Sipila, E., J. Virkki, J. Wang, L. Sydanheimo, and L. Ukkonen, "Brush-painting and photonic sintering of copper oxide and silver inks on wood and cardboard substrates to form antennas for UHF RFID tags," International Journal of Antennas and Propagation, Vol. 2016, 2016.

20. Ten Brink, G. H., N. Foley, D. Zwaan, B. J. Kooia, and G. Palasantzas, "Roughness controlled superhydrophobicity on single nanometer length scale with metal nanoparticles," RSC Advances, Vol. 5, 28696-28702, 2015.
doi:10.1039/C5RA02348C

21. Van Der Pauw, L. J., "A method of measuring specific resistivity and hall effect of discs of arbitrary shape," Philips Research Reports, Vol. 13, 1-9, Feb. 1958.

22. Kang, J. S., H. S. Kim, J. Ryu, H. T. Hahn, S. Jang, and J. W. Joung, "Inkjet printed electronics using copper nanoparticle ink," Journal of Materials Science: Materials in Electronics, Vol. 21, No. 11, 1213-1220, 2010.
doi:10.1007/s10854-009-0049-3

23. Zenou, M., O. Ermak, A. Saar, and Z. Kotler, "Laser sintering of copper nanoparticles," Journal of Physics D: Applied Physics, Vol. 47, No. 2, 2013.

24. Chen, C. N., C. P. Chen, T.-Y. Dong, T. C. Chang, M. C. Chen, H. T. Chen, and I. G. Chen, "Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature," Acta Materialia, Vol. 60, No. 16, 5914-5924, 2012.
doi:10.1016/j.actamat.2012.07.034

25. Ahmed, S., F. A. Tahir, A. Shamim, and H. M. Cheema, "A compact Kapton-based inkjet-printed multiband antenna for flexible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681

26. Wei, Y., Y. Li, R. Torah, and J. Tudor, "Laser curing of screen and inkjet printed conductors on flexible substrates," Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Montpellier, France, Apr. 27–30, 2015.

27. Elsheakh, D. M. and M. F. Iskander, "Circularly polarized triband printed Quasi-Yagi antenna for millimeter-wave applications," International Journal of Antennas and Propagation, Vol. 2015, 2015.

28. Mehdipour, A., I. D. Rosca, A.-R. Sebak, C. W. Trueman, and S. V. Hoa, "Carbon nanotube composite for wideband millimeter-wave antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3572-3578, 2011.
doi:10.1109/TAP.2011.2163755