Vol. 74
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-05-17
Bandwidth-Enhanced Double-Slot TSA with Y-Shaped Corrugated Edges
By
Progress In Electromagnetics Research C, Vol. 74, 63-71, 2017
Abstract
In this paper, a novel bandwidth-enhanced ultra-wideband (UWB) tapered slot antenna, with Y-shaped corrugated edges, is proposed. In the double-slot structure, the two slots are separated by a V-shaped metal surface with straight edges, which is beneficial for improving the directivity of the antenna. Meanwhile, an exponential Y-shaped corrugated edge is designed. This novel corrugated edge not only can improve the impedance bandwidth of the antenna by extending the path of the current, but also can enhance the directivity by concentrating the energy near the tapered slot. The proposed antenna provides 167% fractional bandwidth from 2.5 GHz to 28 GHz. The gain of the antenna is more than 10 dB from 3.5 GHz to 25 GHz and more than 8 dB in the whole operating band.
Citation
Yaqiao Liu Jian-Gang Liang Ya-Wei Wang , "Bandwidth-Enhanced Double-Slot TSA with Y-Shaped Corrugated Edges," Progress In Electromagnetics Research C, Vol. 74, 63-71, 2017.
doi:10.2528/PIERC17030108
http://www.jpier.org/PIERC/pier.php?paper=17030108
References

1. Abedian, M., S. K. A. Rahim, S. Danesh, S. Hakimi, and L. Y. Cheong, "Novel design of compact UWB dielectric resonator antenna with dual-band-rejection characteristics for WiMAX/WLAN bands," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 245-248, 2015.
doi:10.1109/LAWP.2014.2360828

2. Pandey, G. K. and M. K. Meshram, "A printed high gain UWB Vivaldi antenna design using tapered corrugation and grating elements," International Journal of RF and Microwave Computer-Aided ngineering, Vol. 25, No. 7, 610-618, 2015.
doi:10.1002/mmce.20899

3. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research, Vol. 95, 397-407, 2009.
doi:10.2528/PIER09080204

4. Hines, J. N., V. H. Rumsey, and C. H. Walter, "Traveling-wave slot antennas," Proc. I.R.E, Vol. 41, 1624-2631, 1953.
doi:10.1109/JRPROC.1953.274190

5. Zhang, F., et al., "A novel compact double exponentially tapered slot antenna (DETSA) for GPR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 195-198, 2011.
doi:10.1109/LAWP.2011.2123868

6. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A super wideband Chebyshev tapered antipodal Vivaldi antenna," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 9, 1328-1333, 2015.
doi:10.1016/j.aeue.2015.05.017

7. Khalichi, B., S. Nikmehr, and A. Pourziad, "Development of novel wideband H-plane horn antennas by employing asymmetrical slots based on SIW technology," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 9, 1374-1380, 2015.
doi:10.1016/j.aeue.2015.06.004

8. Oraizi, H. and S. Jam, "Optimum design of tapered slot antenna profile," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1987-1995, Aug. 2003.
doi:10.1109/TAP.2003.811090

9. Oktafiani, F., Y. S. Amrullah, Y. P. Saputera, Y. Wahyu, and Y. N. Wijayanto, "Analysis of corrugated edge variations on balanced antipodal Vivaldi antennas," 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), 1-5, 2015.

10. Madannezhad, A., H. Ameri, S. Sadeghi, and R. Faraji-Dana, "A miniaturized Vivaldi antenna with modified feeding structure for UWB applications," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-3, 2016.

11. Nakajima, H., T. Kosugi, and T. Enoki, "Hyperbolic tangent tapered slot antenna," IET Electronics Letters, Vol. 46, No. 21, 31-32, 2010.
doi:10.1049/el.2010.2383

12. Walter, E., L. Ortiz-Balbuena, A. Ghadiri, and K. Moez, "A 324-element Vivaldi antenna array for radio astronomy instrumentation," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 241-249, 2012.

13. Lim, T. G., H. N. Ang, I. D. Robertson, and B. L. Weiss, "Integrated millimeter-wave tapered slot antenna using conductor strip gratings," IET Microw. Antennas Propag., Vol. 4, No. 9, 1216-1223, 2010.
doi:10.1049/iet-map.2008.0121

14. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic band gap dielectrics," IEEE MTT-S Int. Microwave Symp. Dig., 1157-1160, San Francisco, CA, 1996.

15. Wang, Y.-W., G.-M. Wang, and B.-F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 18, 1380-1383, 2013.
doi:10.1109/LAWP.2013.2285182

16. Kumar, P., Z. Akhter, A. Kr. Jha, and M. Jaleel Akhtar, "Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2333-2334, 2015.

17. Shuppert, B., "Microstrip/Slotline transitions: Modeling and experimental investigation," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1272-1282, 1988.
doi:10.1109/22.3669