Vol. 75
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-17
Sensitivity Modeling of a Strain-Sensing Antenna
By
Progress In Electromagnetics Research C, Vol. 75, 87-97, 2017
Abstract
A quarter-wavelength folded patch antenna is adopted as the passive wireless strain sensor for structural health monitoring (SHM) of bridges. It can be used for continuous surveillance and damage detection. According to theoretical formulations, strain simulation and experiments, it is found that a good linearity relationship can be achieved between normalized resonance frequency shift and the strain both in longitudinal and transverse directions. And the sensing sensitivity in longitudinal strain is better than that in transverse strain. Through conducting tensile experiments, we find that many factors can influence the strain sensitivity. To address this fundamental issue in antenna sensors for strain sensing, a new strain sensitivity experiment is proposed to take the influence of strain transfer ratio change under strain. The linear relationship of strain transfer ratio and deformation is obtained by sensitivity experiment. The corrected sensitivity in longitudinal and transverse strains is calculated based on the linearity. Furthermore, the Possion effect is taken into consideration to explain the opposite effects of experimental and simulated sensitivities in transverse strain.
Citation
Lan Chen Tao Geng Guochun Wan Ling Yi Tang Mei Song Tong , "Sensitivity Modeling of a Strain-Sensing Antenna," Progress In Electromagnetics Research C, Vol. 75, 87-97, 2017.
doi:10.2528/PIERC17031309
http://www.jpier.org/PIERC/pier.php?paper=17031309
References

1. Sohn, H., et al., "A review of structural health monitoring literature: 1996–2001," Tech. Rep. LA-13976-MS, Los Alamos Nat. Lab., Los Alamos, NM, USA, 2003.

2. Michie, W. C., B. Culshaw, S. S. J. Roberts, and R. Davidson, "Fiber optic technique for simultaneous measurement of strain and temperature variations in composite materials," Proc. SPIE, Vol. 1588, Boston, MA, USA, Dec. 1991.

3. Lynch, J. P. and K. J. Loh, "A summary review of wireless sensors and sensor networks for structural health monitoring," Shock Vib Digest, Vol. 38, 91-130, 2006.
doi:10.1177/0583102406061499

4. Mohammad, I., et al., "Detecting crack orientation using patch antenna sensors," Meas. Sci. Technol., Vol. 23, 015102, 2012, doi:10.1088/0957-0233/23/1/015102.
doi:10.1088/0957-0233/23/1/015102

5. Murray, W. M. and W. R. Miller, The Bonded Electrical Resistance Strain Gage: An Introduction, Oxford Univ. Press, New York, NY, USA, 1992.

6. Liu, L. and F. G. Yuan, "Wireless sensors with dual-controller architecture for active diagnosis in structural health monitoring," Smart Mater. Struct., Vol. 17, No. 2, 025016, Apr. 2008.
doi:10.1088/0964-1726/17/2/025016

7. Kurata, N., B. F. Spencer, M. Ruiz-Sandoval, and , "Risk monitoring of buildings with wireless sensor networks,", Vol. 12, No. 3-4, 315-327, Jul./Dec. 2005.

8. Thai, T. T., G. R. DeJean, and M. M. Tentzeris, "A novel front-end radio frequency pressure transducer based on a dual-band resonator for wireless sensing," IEEE MTT-S International Microwave Symposium Digest, 2009, MTT’09, 1701-1704, IEEE, Boston, 2009.

9. Lee, H., et al., "Antenna-based ‘smart skin’ sensors for sustainable, wireless sensor networks," 2012 IEEE International Conference on Industrial Technology (ICIT), 189-193, IEEE, Athens, 2012.

10. Lee, H., et al., "A novel highly-sensitive antenna-based ‘smart skin’ gas sensor utilizing carbon nanotubes and inkjet printing," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1593-1596, IEEE, Spokane, 2011.

11. Sohn, H., C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, and B. R. Nadler, "A review of structural health monitoring literature,", 1996-2001 NM Report No. LA-13976-MS, Los Alamos National Laboratory.

12. Finkenzeller, K., RFID Handbook, 2nd Ed., Wiley, New York, NY, USA, 2003.