Vol. 75
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-06-14
Tunable Plasmonic Induced Transparency in Graphene Nanoribbon Resonators
By
Progress In Electromagnetics Research C, Vol. 75, 53-61, 2017
Abstract
A plasmonic induced transparency (PIT) structure is proposed and numerically investigated using the finite difference time domain (FDTD) method, which is achieved by the destructive interference between two graphene nano ribbon resonators and the bus waveguide. The common three-level atom system is used to explore the physical origin of the PIT behavior. The simulation results show that the PIT at different modes can be excited or suppressed by choosing the proper coupling position of the resonators. The peak and bandwidth of the transparent window are controlled by the coupling distance between the resonators and the bus waveguide, and the transparent window can be freely tuned by adjusting the chemical potential of graphene. The tunable PIT effect may offer a new avenue for novel integrated optical switching and slow-light devices in THz and mid-infrared frequencies.
Citation
Huawei Zhuang Hongkui Xu Shulan Gong Yuling Wang , "Tunable Plasmonic Induced Transparency in Graphene Nanoribbon Resonators," Progress In Electromagnetics Research C, Vol. 75, 53-61, 2017.
doi:10.2528/PIERC17032402
http://www.jpier.org/PIERC/pier.php?paper=17032402
References

1. Boller, K. J., A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 66, 2593, 1991.
doi:10.1103/PhysRevLett.66.2593

2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

3. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901

4. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

5. Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, No. 4, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

6. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, No. 4, 1103-1107, 2010.
doi:10.1021/nl902621d

7. Smith, D. D., H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A, Vol. 69, No. 6, 063804, 2004.
doi:10.1103/PhysRevA.69.063804

8. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, No. 12, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901

9. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon induced transparency," Phys. Rev. Lett., Vol. 104, No. 24, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902

10. Wang, G., H. Lu, and X. Liu, "Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency," Opt. Express, Vol. 20, 20902, 2012.
doi:10.1364/OE.20.020902

11. Lu, H., X. Liu, and D. Mao, "Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems," Phys. Rev. A, Vol. 85, 053803, 2012.
doi:10.1103/PhysRevA.85.053803

12. Yahiaoui, R., K. Takano, F. Miyamaru, M. Hangyo, and P. Mounaix, "Terahertz meta-molecules deposited on thin flexible polymer: Design, fabrication and experimental characterization," J. Opt., Vol. 16, 094014, 2014.
doi:10.1088/2040-8978/16/9/094014

13. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.
doi:10.1063/1.4929449

14. Yahiaoui, R., A. C. Strikwerda, and P. U. Jepsen, "Terahertz plasmonic structure with enhanced sensing capabilities," IEEE Sensors Journal, Vol. 16, 2484, 2016.
doi:10.1109/JSEN.2016.2521708

15. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

16. He, X., Q. Wang, and S. F. Yu, "Investigation of multilayer subwavelength metallic-dielectric stratified structures," IEEE J. Quantum Elect., Vol. 48, 1554, 2012.
doi:10.1109/JQE.2012.2219504

17. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

18. He, S., X. Zhang, and Y. He, "Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI," Opt. Express, Vol. 21, 30664-30673, 2013.
doi:10.1364/OE.21.030664

19. Nikitin, A. Y., F. Guinea, F. J. Garcıa-Vidal, and L. Martın-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407

20. Zhu, X., W. Yan, N. A. Mortensen, and S. Xiao, "Bends and splitters in graphene nanoribbon waveguides," Opt. Express, Vol. 21, 3486-3491, 2013.
doi:10.1364/OE.21.003486

21. Shi, X., D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, "Plasmonic analog of electromagnetically induced transparency in nanostructure graphene," Opt. Express, Vol. 21, No. 23, 28438, 2013.
doi:10.1364/OE.21.028438

22. Shi, X., X. Su, and Y. Yang, "Enhanced tunability of plasmon induced transparency in graphene strips," J. Appl. Phys., Vol. 117, 143101, 2015.
doi:10.1063/1.4916748

23. Lin, Q., X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, "Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings," EPL, Vol. 111, 340004, 2015.

24. Wang, L., W. Li, and X. Jiang, "Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide," Opt. Lett., Vol. 40, No. 10, 2325-2328, 2015.
doi:10.1364/OL.40.002325

25. Fu, G., X. Zhai, H. J. Li, S. X. Xia, and L. L. Wang, "Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips," Plasmonics, 2016, doi:10.1007/s11468-016-0215-4 (2016).

26. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Appl. Phys. Lett., Vol. 100, 131111, 2012.
doi:10.1063/1.3698133

27. Gan, C. H., H. S. Chu, and E. P. Li, "Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies," Phys. Rev. B, Vol. 85, 125431, 2012.
doi:10.1103/PhysRevB.85.125431

28. Zhuang, H., F. Kong, K. Li, and S. Sheng, "Plasmonic bandpass filter based on graphene nanoribbon," Appl. Opt., Vol. 54, 2558-2564, 2015.
doi:10.1364/AO.54.002558

29. Han, Z. H. and S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Express, Vol. 19, 3251-3257, 2011.
doi:10.1364/OE.19.003251