Vol. 76
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-19
A Novel High-Gain Cavity Slot Antenna Based on Polarization Twist Reflector for High Power Microwave Applications
By
Progress In Electromagnetics Research C, Vol. 76, 23-31, 2017
Abstract
A novel high-gain and high-power cavity slot antenna is presented in this paper. The antenna consists of a slotted cavity cover, a driven antenna and a polarization twist reflector. The driven antenna is a balanced-fed dipole. And a 2×4 slots array is etched on the top surface of the cavity cover. To excite the cavity slots with uniform amplitude and phase, the polarization twist reflector is used here. Compared with the antenna without the twister, the gain is improved by almost 4.0 dB across the operating band. In addition, the field distributions of the proposed antenna are analyzed through simulation, which proves a high power-handling capacity of 3.94 MW. To verify the design, a prototype operating at 5.8 GHz bands has been fabricated and measured. The measured maximum gain and radiation efficiency are 13.6 dBi and 95%, respectively.
Citation
Hong-Yin Zhang, Fu-Shun Zhang, and Fan Zhang, "A Novel High-Gain Cavity Slot Antenna Based on Polarization Twist Reflector for High Power Microwave Applications," Progress In Electromagnetics Research C, Vol. 76, 23-31, 2017.
doi:10.2528/PIERC17050206
References

1. Sasaki, S., K. Tanaka, and Advanced Mission Research Group, "Wireless power transmission technologies for solar power satellite," IEEE MTT-S Int. Microwave Workshop Ser. Innovative. Wireless Power Transmission, Technol. Syst. Appl., 3-6, 2011.

2. Shinohara, N., "Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan," Proc. IEEE, Vol. 101, No. 6, 1448-1463, Jun. 2013.
doi:10.1109/JPROC.2013.2253062

3. Chen, H. D., C. Y. D. Sim, J. Y. Wu, and T. W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3977-3980, Aug. 2012.
doi:10.1109/TAP.2012.2201116

4. Jiang, Y. H., W. G. Yi, and H. C. Sun, "A new focused antenna array with circular polarization," Microw. Opt. Technol. Lett., Vol. 57, No. 12, 2936-2939, Dec. 2015.
doi:10.1002/mop.29471

5. Yang, T. Y., W. Hong, and Y. Zhang, "Wideband high-gain low-profile dual-polarized stacked patch antenna array with parasitic elements," Microw. Opt. Technol. Lett., Vol. 57, No. 9, 2012-2016, Sep. 2015.
doi:10.1002/mop.29251

6. Han, W. W., F. Yang, and H. J. Zhou, "Slotted substrate integrated cavity antenna using TE330 mode with low profile and high gain," Electron. Lett., Vol. 50, 488-490, 2014.
doi:10.1049/el.2013.4073

7. Razavi, S. A. and M. H. Neshati, "Development of slot array antenna using a multiresonant SIW cavity," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2763-2767, Nov. 2013.
doi:10.1002/mop.27938

8. Liu, Y., Y. W. Hao, and S. X. Gong, "Low-profile high-gain slot antenna with Fabry-P´erot cavity and mushroom-like electromagnetic band gap structures," Electron. Lett., Vol. 51, 305-306, 2015.
doi:10.1049/el.2014.4190

9. Jayasinghe, J. M. J. W., J. Anguera, and D. N. Uduwawala, "Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile," Radioengineering, Vol. 22, No. 3, 700-707, Sep. 2013.

10. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the Sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, Nov. 2001.
doi:10.1002/mop.1407

11. Anguera, J., J. P. Daniel, C. Borja, J. Mumbr´u, C. Puente, T. Leduc, N. Laeveren, and P. Van Roy, "Metallized foams for fractal-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, Dec. 2008.
doi:10.1109/MAP.2008.4772718

12. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804

13. Cong, L. L., X. Y. Cao, W. Q. Li, and Y. Zhao, "A new design method for patch antenna with low RCS and high gain performance," Progress In Electromagnetics Research Letter, Vol. 59, 77-84, 2016.
doi:10.2528/PIERL15012801

14. Muhammad, N., H. Umair, Z. U. Islam, Z. Khitab, I. Rashid, and F. A. Bhatti, "High gain FSS aperture coupled microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102

15. Muhammad, S. A., R. Sauleau, and H. Legay, "Small-size shielded metallic stacked Fabry-Perot cavity antennas with large bandwidth for space applications," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 792-802, Feb. 2012.
doi:10.1109/TAP.2011.2173133

16. Muhammad, S. A., R. Sauleau, G. Valerio, and H. Legay, "Self-polarizing Fabry-Perot antennas based on polarization twisting element," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1032-1040, Mar. 2013.
doi:10.1109/TAP.2012.2227443

17. Li, X. Q., Q. X. Liu, X. J. Wu, L. Zhao, J. Q. Zhang, and Z. Q. Zhang, "A GW level high-power radial line helical array antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2943-2948, Sep. 2008.
doi:10.1109/TAP.2008.928781

18. Li, X. Q., Q. X. Liu, J. Q. Zhang, and L. Zhao, "16-element single-layer rectangular radial line helical array antenna for high-power applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 708-711, 2010.
doi:10.1109/LAWP.2010.2059371

19. Hwang, K. C., "Optimization of broadband twist reflector for Ku-band application," Electron. Lett., Vol. 44, 210-211, 2008.
doi:10.1049/el:20082937

20. Hwang, K. C., "A novel meander-grooved polarization Twist reflector," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 4, 217-219, Apr. 2010.
doi:10.1109/LMWC.2010.2042557