Vol. 75
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-14
Tri-Band BPF with Six Transmission Zeros Based on Quad-Mode DGS Resonator and MSIR
By
Progress In Electromagnetics Research C, Vol. 75, 193-201, 2017
Abstract
This paper presents the comprehensive design and analysis of a tri-band bandpass filter (BPF) based on a novel quad-mode defected ground structure resonator (QMDGSR) fed by two 50 Ω microstrip lines under the source-load coupling condition. Four transmission zeros (TZs) are produced in the proposed tri-band bandpass structure with two TZs beside each passband. All the four TZs are thoroughly analysed using equivalent circuit models based on the even-/odd-mode theory, and the corresponding equation for extracting the frequency of each TZ is developed and verified. The bandwidths (BWs) of the 1st and 3rd operating bands are broadened by incorporating the proposed triband bandpass structure with a traditional microstrip stepped impedance resonator (MSIR). Also, two additional TZs are generated due to the coupling between the feeding lines and the newly incorporated MSIR, which significantly result in the passband selectivity improvement. The lower and upper stopband rejections of the fabricated prototype are as high as 83.3 and 43.9 dB, respectively.
Citation
Biao Peng Shufang Li Li Deng , "Tri-Band BPF with Six Transmission Zeros Based on Quad-Mode DGS Resonator and MSIR," Progress In Electromagnetics Research C, Vol. 75, 193-201, 2017.
doi:10.2528/PIERC17051104
http://www.jpier.org/PIERC/pier.php?paper=17051104
References

1. Azadegan, R. and K. Sarabandi, "Miniature high-Q double-spiral slot-line resonator filters," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 5, 1548-1557, 2004.
doi:10.1109/TMTT.2004.827044

2. Wang, L. and B. R. Guan, "Compact and high selectivity tri-band BPF using nested DDGSRs," Electron. Lett., Vol. 48, No. 7, 378-379, 2012.
doi:10.1049/el.2012.0118

3. Wei, F., P. Y. Qin, Y. J. Guo, C. Ding, and X. W. Shi, "Compact balanced dual- and tri-band bpfs based on coupled complementary split-ring resonators (C-CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 2, 107-109, 2016.
doi:10.1109/LMWC.2016.2517125

4. Ebrahimi, A., W. Withayachumnankul, S. F. Al-Sarawi, and D. Abbott, "Compact dual-mode wideband filter based on complementary split-ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 3, 152-154, 2014.
doi:10.1109/LMWC.2013.2291869

5. Peng, B., S. F. Li, J. F. Zhu, Q. Y. Zhang, L. Deng, Q. S. Zeng, and Y. Gao, "Wideband bandpass filter with high selectivity based on dual-mode DGS resonator," Microw. Opt. Tech. Lett., Vol. 58, No. 10, 2300-2302, 2016.
doi:10.1002/mop.30037

6. Liu, H.W., L. Shen, Y. Jiang, X. H., Guan, S.Wang, L. Y. Shi, and D. Ahn, "Triple-mode bandpass filter using defected ground waveguide," Electron. Lett., Vol. 47, No. 6, 388-389, 2011.
doi:10.1049/el.2011.0006

7. Peng, B., S. F. Li, J. F. Zhu, Q. Y. Zhang, L. Deng, Q. S. Zeng, and Y. Gao, "Compact quadmode bandpass filter based on quad-mode DGS resonator," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 4, 234-236, 2016.
doi:10.1109/LMWC.2016.2537053

8. Mitsuo, M. and S. Yamashita, "Microstrip realization of generalized chebyshev filters with box-like coupling schemes," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 12, 1413-1417, 1980.
doi:10.1109/TMTT.1980.1130258

9. Peng, Y. T., L. J. Zhang, and Y. Q. Leng, "A dual-mode dual-band bandpass filter using a tristubs loaded multimode resonator (TSLMR)," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 16, 2067-2073, 2014.
doi:10.1080/09205071.2014.957787

10. Deng, K., J. Z. Zhang, B. Wu, S. J. Sun, and X. W. Shi, "Design of microstrip tri-band bandpass filter using square ring loaded resonator," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 18, 2364-2373, 2014.
doi:10.1080/09205071.2014.969812

11. Ai, J., Y. Zhang, K. D. Xu, D. Li, and Y. Fan, "Miniaturized quint-band bandpass filter based on multi-mode resonator and lambda/4 resonators with mixed electric and magnetic coupling," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 5, 343-345, 2016.
doi:10.1109/LMWC.2016.2549643

12. Xu, S. S., K. X. Ma, F. Y. Meng, and K. S. Yeo, "Novel defected ground structure and two-side loading scheme for miniaturized dual-band SIW bandpass filter designs," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 217-219, 2015.
doi:10.1109/LMWC.2015.2400916

13. Chen, H., H. F. Zhao, K. S. Chen, Y. H. Wu, P. Tang, and H. S. Zhong, "A high selectivity quadband bandpass filter based on hybrid-coupled microstrip/slotline quad-mode resonator," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1902-1909, 2013.
doi:10.1080/09205071.2013.828574

14. Lai, X., C. H. Liang, H. Di, and B. Wu, "Design of tri-band filter based on stub loaded resonator and DGS resonator," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 5, 265-267, 2010.
doi:10.1109/LMWC.2010.2045584

15. Wu, B., C. H. Liang, Q. Li, and P. Y. Qin, "Novel dual-band filter incorporating defected SIR and microstrip SIR," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 6, 392-394, 2008.
doi:10.1109/LMWC.2008.922614

16. Peng, B., S. F. Li, B. Zhang, and S. Wang, "Triband filter with high design flexibility and wide stopband using DGS and shorted stub-loaded resonator," Microw. Opt. Tech. Lett., Vol. 57, No. 5, 1098-2760, 2015.
doi:10.1002/mop.29067

17. Rosenberg, U. and S. Amari, "Novel coupling schemes for microwave resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2896-2902, 2002.
doi:10.1109/TMTT.2002.805171

18. Liao, C. M., P. L. Chi, and C. Y. Chang, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 147-153, 2007.
doi:10.1109/TMTT.2006.888580