Vol. 76
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-01
Wide-Angle Polarization Independent Triple Band Absorber Based on Metamaterial Structure for Microwave Frequency Applications
By
Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017
Abstract
This paper presents a wide-angle polarization independent triple-band absorber based on a metamaterial structure for microwave frequency applications. The designed absorber structure is the combination of two resonators (resonator-I and resonator-II). The proposed absorber is ultra-thin in thickness (0.012λo at lowest resonance frequency and 0.027λo at highest resonance frequency). The proposed absorber structure offers three absorption bands with peak absorptivities of 99.95%, 95.32% and 99.47% at 4.48, 5.34 and 10.43 GHz, respectively. Additionally, it also offers the full width at half maximum (FWHM) bandwidth of 167.2 MHz (4.40 - 4.56 GHz), 178.1 MHz (5.25 - 5.43 GHz) and 393.8 MHz (10.24 - 10.63 GHz), respectively. The metamaterial property of the designed absorber structure has been discussed by using dispersion diagram plot. The designed absorber structure exhibits wide-angle absorption at various oblique incidence angle for both TM and TE polarizations. The absorption mechanism of the designed absorber structure has been analyzed through electric field and surface current distribution plots. The input impedance of the designed absorber (375.67 Ω at 4.48 GHz and 346.73 Ω at 10.43 GHz), nearly matches the free space impedance. The proposed absorber structure is fabricated and measured. Simulated and measured results are in good agreement with each other.
Citation
Khusboo Kumari Naveen Mishra Raghvendra Kumar Chaudhary , "Wide-Angle Polarization Independent Triple Band Absorber Based on Metamaterial Structure for Microwave Frequency Applications," Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017.
doi:10.2528/PIERC17051703
http://www.jpier.org/PIERC/pier.php?paper=17051703
References

1. Caloz, C. and T. Itoh, Electromagnetic: Transmission Line Theory and Microwave Applications, John Wiley & Sons, Inc., 2006.

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

3. Veselago, V. G., "The Electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh Usp. Fiz. Nauk, Vol. 92, 509-514, 1964.

4. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2081, 1999.
doi:10.1109/22.798002

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. Physics, Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2011.
doi:10.1126/science.1058847

7. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Lett., Vol. 58, 71-75, 2016.
doi:10.1002/mop.29494

8. Bilotti, F., S. Tricarico, and L. Vegni, "Plasmonic metamaterial cloaking at optical frequencies," IEEE Transactions on Nanotechnology, Vol. 9, 55-61, 2010.
doi:10.1109/TNANO.2009.2025945

9. Fouad, M. A. and M. A. Abdalla, "New π-T generalised metamaterial negative refractive index transmission line for a compact coplanar waveguide triple band pass filter applications," IET Microw. Antennas Propag., Vol. 8, 1097-1104, 2014.
doi:10.1049/iet-map.2013.0698

10. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. 110, 014909, 2011.
doi:10.1063/1.3608246

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

12. Lin, B.-Q., S.-H. Zhao, X.-Y. Da, Y.-W. Fang, J.-J. Ma, W. Li, and Z. H. Zhu, "Design of an ultracompact metamaterial absorber," Microwave and Optical Technology Lett., Vol. 57, 1439-1441, 2015.
doi:10.1002/mop.29099

13. Thummaluru, S. R., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultra-thin X-band polarization — insensitive metamaterial absorber," Microwave Optical Technology Lett., Vol. 58, 2481-2485, 2016.
doi:10.1002/mop.30071

14. Zhai, H., Z. Li, L. Li, and C. Liang, "A dual-band wide-angle polarization-insensitive ultrathin gigahertz metamaterial absorber," Microwave and Optical Technology Lett., Vol. 55, 1606-1609, 2013.
doi:10.1002/mop.27622

15. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Applied Physics Letters, Vol. 100, 103506, 2012.
doi:10.1063/1.3692178

16. Bian, B., S. Liu, S. Wang, X. K. Kong, H. Zhang, B. Ma, and H. Yang, "Novel tripleband polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, 194511, 2013.
doi:10.1063/1.4832785

17. Huang, X., H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, "Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber," Journal of Applied Physics, Vol. 113, 213516, 2013.
doi:10.1063/1.4809655

18. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physics Review E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617