Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Wideband High Gain Antenna Subarray for 5G Applications

By Seyyedehelnaz Ershadi, Asghar Keshtkar, Ahmed H. Abdelrahman, and Hao Xin
Progress In Electromagnetics Research C, Vol. 78, 33-46, 2017


Wideband arrays have recently received considerable attention in 5G applications to cover larger frequency bands. This paper presents a novel design of a high gain and wideband antenna subarray from 23 GHz to 32 GHz, which covers the frequency bands proposed by the Federal Communications Commission (FCC) for 5G communications. The proposed subarray consists of four radiating elements with wideband and high gain characteristics. These elements are composed of two stacked patches, which are fed using the proximity coupling technique. A unit-cell element prototype is first fabricated and tested to validate the gain and bandwidth performances. A 1x4 subarray prototype is then fabricated and tested, while maintaining an element spacing less than half-wavelength at the center frequency, to avoid grating lobes and to keep the small size of the antenna subarray. The measurement results of the prototypes, i.e. unit cell element and subarray prototypes, show good agreements with the simulations. The subarray measurements demonstrate a high gain of 10-12 dBi, an impedance bandwidth of 33.4 %, and a 1-dB gain bandwidth of 10.5 %. The proposed antenna subarray is a good candidate for wideband and high gain antenna arrays suitable for 5G mmW applications.


Seyyedehelnaz Ershadi, Asghar Keshtkar, Ahmed H. Abdelrahman, and Hao Xin, "Wideband High Gain Antenna Subarray for 5G Applications," Progress In Electromagnetics Research C, Vol. 78, 33-46, 2017.


    1. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Commun. Mag., Vol. 49, No. 6, 101-107, Jun. 2011.

    2. Rappaport, T. S., F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir, "Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1850-1859, Apr. 2013.

    3. Barati, C. N., S. A. Hosseini, S. Rangan, P. Liu, T. Korakis, S. S. Panwar, and T. S. Rappaport, "Directional cell discovery in millimeter-wave cellular networks," IEEE Trans. Wireless Commun., Vol. 14, No. 12, 6664-6678, Dec. 2015.

    4. Rajagopal, S., S. Abu-Surra, Z. Pi, and F. Khan, "Antenna array design for multi-Gbps mmWave mobile broadband communication," IEEE Global Telecommunications Conf., Texas, USA, Dec. 5–9, 2011.

    5. Rappaport, T. S., S. Sun, R. ‘Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter-wave mobile communications for 5G cellular: It will work," IEEE Access, Vol. 1, 335-349, May 2013.

    6. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, Vol. 102, No. 3, 366-385, Mar. 2014.

    7. Ghosh, A., T. A. Thomas, M. C. Cudak, R. Ratasuk, P. Moorut, F. W. Vook, T. S. Rappaport, G. R. MacCartney, S. ‘Sun, and S. Nie, "Millimeter-wave enhanced local area systems: A highdata- rate approach for future wireless networks," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1152-1163, Jun. 2014.

    8. Baldemair, R., T. Irnich, K. Balachandran, E. Dahlman, G. Mildh, Y. Selen, S. Parkvall, M. Meyer, and A. Osseiran, "Ultra-dense networks in millimeter-wave frequencies," IEEE Commun. Mag., Vol. 53, No. 1, 202-208, Jan. 2015.

    9. Pi, Z., J. Choi, R. Heath, and Jr., "Millimeter-wave gigabit broadband evolution toward 5G fixed access and backhaul," IEEE Commun. Mag., Vol. 54, No. 4, 138-144, Apr. 2016.

    10. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. Maccartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeterwave bands," IEEE Commun. Mag., Vol. 52, No. 9, 78-86, Sep. 2014.

    11. Samimi, M. K., T. S. Rappaport, and G. R. Maccartney, "Probabilistic omnidirectional path loss models form millimeter-wave outdoor communications," IEEE Wireless Commun. Lett., Vol. 4, No. 4, 357-360, Aug. 2015.

    12. Maccartney, G. R., T. S. Rappaport, M. Samimi, and S. Sun, "Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling," IEEE Access, Vol. 3, 1573-1580, Aug. 2015.

    13. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeterwave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Trans. Wireless Commun., Vol. 3, 2388-2424, Oct. 2015.

    14. Sun, S., T. S. Rappaport, T. A. Thomas, A. Ghosh, H. C. Nguyen, I. Z. Kovacs, I. Rodriguez, O. Koymen, and A. Partyka, "Investigatisn of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications," IEEE Trans. Veh. Technol., Vol. 65, No. 5, 2843-2860, May 2016.

    15. Rappaport, T. S., G. R. Maccartney, M. K. Samimi, and S. Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design," IEEE Trans. Commun., Vol. 63, No. 9, 3029-3056, Sep. 2015.

    16. Wu, D., J. Wang, Y. Cai, and M. Guizani, "Millimeter-wave multimedia communications: Challenges, methodology, and applications," IEEE Commun. Mag., Vol. 53, No. 1, 232-238, Jan. 2015.

    17. Rajagopal, S., S. Abu-surra, J. C. Zhang, and F. Khan, "Power efficient signal processing for mm-Wave 5G systems," J. Signal Process. Syst., Vol. 83, No. 2, 177-190, May 2016.

    18., , FCC, FCC 15-138, (2015, Oct. 23), [Online], Available: https://apps.fcc.gov/edocs public/attachmatch/FCC-15-138A1.pdf.

    19. Aryanfar, F., J. Pi, H. Zhou, T. Henige, G. Xu, S. Abu-Surra, D. Psychoudakis, and F. Khan, "Millimeter-wave base station for mobile broadband communication," IEEE MTT-S Int. Microw. Symp., Phoenix, USA, May 17–22, 2015.

    20. Massa, A., M. Donelli, F. De Natale, S. Caorsi, and A. Lommi, "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2919-2924, Nov. 2004.

    21. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6GHz Wi-Max band portable devices," IEEE Ant. and Wireless Prop. Lett., Vol. 5, No. 4, 116-119, Apr. 2006.

    22. Azaro, R., F. De Natale, M. Donelli, E. Zeni, and A. Massa, "Synthesis of a prefractal dual-band monopolar antenna for GPS applications," IEEE Ant. and Wireless Prop. Lett., Vol. 5, No. 1, 361-364, Aug. 2006.

    23. Caorsi, S., F. De Natale, M. Donelli, D. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, Apr. 2012.

    24. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.

    25. Zhou, H. and F. Aryanfar, "A Ka-band patch antenna array with improved circular polarization," IEEE Ant. and Prop. Soc. Int. Symp., Florida, USA, Jul. 7–13, 2013.

    26. Zhou, H. and F. Aryanfar, "Millimeter-wave open ended SIW antenna with wide beam coverage," IEEE Ant. and Prop. Soc. Int. Symp., Florida, USA, Jul. 7–13, 2013.

    27. Phalak, K. and A. Sebak, "Aperture coupled microstrip patch antenna array for high gain at millimeter waves," IEEE Int. Conf. Communication, Networks and Satellite, Jakarta, Indonesia, Nov. 4–5, 2014.

    28. Elboushi, A. and A. Sebak, "High gain 4-element antenna array for millimeter-wave applications," IEEE Int. Conf. Communication, Networks and Satellite, Jakarta, Indonesia, Nov. 4–5, 2014.

    29. Ashraf, N., O. M. Haraz, M. M. M. Ali, M. A. Ashraf, and S. A. S. Alshebili, "Optimized broadband and dual-band printed slot antennas for future millimeter-wave mobile communication," Int. J. Electron. Commun., Vol. 70, No. 3, 257-264, Mar. 2016.

    30. Psychoudakis, D., Z. Wang, and F. Aryanfar, "Dipole array for mm-wave mobile applications," IEEE Antenna and Propagation Soc. Int. Symp., Florida, USA, Jul. 7–13, 2013.

    31. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A. R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, Vol. 2, 909-913, Aug. 2014.

    32. Zhai, W., V. Miraftab, and M. Repeta, "Broadband antenna array with low cost PCB-substrate for 5G millimeter-wave applications," Global Symp. Millimeter Waves, Quebec, Canada, May 25–27, 2015.

    33. Pozar, D. M. and B. Kaufman, "Increasing the bandwidth of a microstrip antenna by proximity coupling," Electron. Lett., Vol. 23, No. 8, 368-369, Apr. 1987.

    34. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, No. 1, 79-91, Jan. 1992.

    35. Rowe, W. S. T. and R. B. Waterhouse, "Investigation into the performance of proximity coupled stacked patches," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1693-1698, Jun. 2006.

    36. Lee, R. Q., K. F. Lee, and J. Bobinchak, "Characteristics of a two-layer electromagnetically coupled rectangular patch antenna," Electronics Lett., Vol. 23, No. 20, 1070-1072, Sep. 1987.

    37. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., New Jersey, Wiley, 2005.

    38. Li, Y., W. Li, Q. Ye, and R. Mittra, "A survey of planar ultra-wideband antenna designs and their applications," Forum for Electromagnetic Research Methods and Application Technologies, Aug. 2014.

    39. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 1st Ed., Boston • London, Artech House, 2001.

    40. Meshram, M. K., "Analysis of L-strip proximity fed rectangular microstrip antenna for mobile base station," Microw. Opt. Techn. Lett., Vol. 49, No. 8, 1817-1824, Aug. 2007.

    41. Hong, J. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York, Wiley, 2001.

    42. Ershadi, S. E., A. Keshtkar, A. H. Abdelrahman, X. Yu, and H. Xin, "Design of wideband unit-cell element for 5G antenna arrays," Asia-Pacific Microwave Conf., Nanjing, China, Dec. 6–9, 2015.

    43. Hansen, R. C., Phased Array Antennas, 2nd Ed., New Jersey, Wiley, 2009.

    44. Pozar, D. M., Microwave Engineering, 4th Ed., New York, Wiley, 2012.

    45. Das, S., Microwave Engineering, 1st Ed., New Delhi, India, Oxford Univ. Press, 2014.