Vol. 76
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-04
Further Wideband RCS Reduction on Metasurface by Introducing a Phasor Interference Element
By
Progress In Electromagnetics Research C, Vol. 76, 139-147, 2017
Abstract
A novel method for further wideband RCS reduction on metasurface (MS) is proposed in this paper. By introducing a phasor interference element to the original MS composed of two elements, RCS of the proposed MS constructed by three elements can be further remarkably decreased in broadband. The measurement procedure on scattering performances of samples is conducted in an anechoic chamber, in which the experimental results indicate that the proposed MS can achieve further 3-dB RCS reduction from 6.94GHz to 15.35GHz compared to the original MS, and the maximum further reduction reaches 24.9dB. As a result, compared with a same-size metallic plate illuminated by a normal plane wave, RCS of the proposed MS can be reduced by more than 8.5-dB from 6.68GHz to 15.38GHz with the relative bandwidth of 78.9%.
Citation
Tong Han Xiang-Yu Cao Jun Gao , "Further Wideband RCS Reduction on Metasurface by Introducing a Phasor Interference Element," Progress In Electromagnetics Research C, Vol. 76, 139-147, 2017.
doi:10.2528/PIERC17061305
http://www.jpier.org/PIERC/pier.php?paper=17061305
References

1. Chu, C. H., M. L. Tseng, J.Chen, P. C. Wu, Y. H. Chen, H. C. Wang, T. Y. Chen, W. T. Hsieh, H. J. Wu, G. Sun, and D. P. Tsai, "Active dielectric metasurface based on phase-change medium," Laser Photonics Rev., Vol. 10, No. 6, 986-994, 2016.
doi:10.1002/lpor.201600106

2. Zhang, H. F., M. Kang, X. Q. Zhang, W. G. Guo, C.G. Lv, Y. F. Li, W. L. Zhang, and J. G. Han, "Coherent control of optical spin-to-orbital angular momentum conversion in metasurface," Adv. Mater., Vol. 29, 1604252, 2017.
doi:10.1002/adma.201604252

3. Xie, B. Y., K. Tang, H. Cheng, Z. Y. Liu, S. Q. Chen, and J. G. Tian, "Coding acoustic metasurfaces," Adv. Mater., Vol. 29, 1603507, 2017.
doi:10.1002/adma.201603507

4. Li, H. P., G. M. Wang, J. G. Liang, X. J. Gao, H. S. Hou, and X. Y. Jia, "Single-layer focusing gradient metasurface for ultrathin planar lens antenna application," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1452-1457, 2017.
doi:10.1109/TAP.2016.2642832

5. Gonzalez-Ovejero, D., G. Minatti, G. Chattopadhyay, and S. Maci, "Multibeam by metasurface antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2923-2930, 2017.
doi:10.1109/TAP.2017.2670622

6. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alex’opolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

7. Paquay, M., J. C. Iriarte, and Ederra, "Thin AMC structure for radar cross-section reduction," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

8. Gao, L. H., N. Xiang, J. Zhao, D. S. Dong, K. Wang, and Q. Cheng, "A low RCS metasurface for THz applications," IEEE 3rd Asia-Pacific Conference on Antennas and Propagation(APCAP), 1279-1281, Harbin, China, 2014.

9. Yang, Y. H., L. Q. Jing, B. Zheng, R. Hao, W. Y. Yin, E. P. Li, C. M. Soukoulis, and H. S. Chen, "Full-polarization 3D metasurface cloak with preserved amplitude and phase," Adv. Mater., Vol. 28, 6866-6871, 2016.
doi:10.1002/adma.201600625

10. Yang, Y. H., H. P. Wang, F. X. Yu, Z. W. Xu, and H. S. Chen, "A metasurface carpet cloak for electromagnetic, acoustic and water waves," Scientific Reports, Vol. 6, 20219, 2016.
doi:10.1038/srep20219

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

12. Yahiaoui, R., J. P. Guillet, F. de Miollis, and P. Mounaix, "Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications," Optics Letters, Vol. 38, No. 23, 4988-4990, 2013.
doi:10.1364/OL.38.004988

13. Yahiaoui, R., K. Hanai, K., Taakano, T., Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, "Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators," Optics Letters, Vol. 40, No. 13, 3197-3200, 2015.
doi:10.1364/OL.40.003197

14. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Applied Physics, Vol. 118, No. 8, 083103, 2015.
doi:10.1063/1.4929449

15. Pan, W., X. Yu, J. Zhang, and W. Zeng, "A broadband terahertz metamaterial absorber based on two circular split rings," IEEE Journal of Quantum Electronics, Vol. 53, No. 2, 8500206, 2017.

16. Nouman, M. T., J. H. Hwang, and J. H. Jang, "Ultrathin terahertz quarter-wave plate based on split ring resonator and wire grating hybrid metasurface," Scientific Reports, Vol. 6, 39062, 2016.
doi:10.1038/srep39062

17. Liang, L. J., M. G. Wei, X. Yan, D. Q. Wei, D. C. Liang, J. G. Han, X. Ding, G. Y. Zhang, and J. Q. Yao, "Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies," Scientific Reports, Vol. 6, 39252, 2016.
doi:10.1038/srep39252

18. Yang, H. H., X. Y. Cao, F. Yang, J. Gao, S. H. Xu, M. K. Li, X. B. Chen, Yi Zhao, Y. J. Zheng, and S. J. Li, "A programmable metasurface with dynamic polarization, scattering and focusing control," Scientific Reports, Vol. 6, 35692, 2016.
doi:10.1038/srep35692

19. Huang, C., B. Sun, W. B. Pan, J. H. Cui, X. Y.Wu, and X. G. Luo, "Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface," Scientific Reports, Vol. 7, 42302, 2017.
doi:10.1038/srep42302

20. Wan, X., M. Q. Qi, T. Y. Chen, and T. J. Cui, "Field-programmable beam reconfiguring based on digitally controlled coding metasurface," Scientific Reports, Vol. 6, 20663, 2016.
doi:10.1038/srep20663

21. Song, Y. C., J. Ding, C. J. Guo, Y. H. Ren, and J. K. Zhang, "Ultra-broadband backscatter radar cross section reduction based on polarization-insensitive metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 329-331, 2016.
doi:10.1109/LAWP.2015.2443853

22. Mighani, M. and G. Dadashzadeh, "Broadband RCS reduction using a novel double layer chessboard AMC surface," Electronics Letters, Vol. 52, No. 14, 1253-1255, 2016.
doi:10.1049/el.2016.1214

23. Li, Y. F., J. Q. Zhang, S. B. Qu, J. F. Wang, H. Y. Chen, Z. Xu, and A. X. Zhang, "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces," Appl. Phys. Lett., Vol. 104, 221110, 2014.
doi:10.1063/1.4881935

24. Yan, X., L. j. Liang, J. Yang, W. W. Liu, X. Ding, D. G. Xu, Y. T. Zhang, T. J. Cui, and J. Q. Yao, "Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface," Optics Express, Vol. 23, No. 22, 29128-29137, 2015.
doi:10.1364/OE.23.029128

25. Wang, K., J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, "Broadband and broad-angle lowscattering metasurface based on hybrid optimization algorithm," Scientific Reports, Vol. 4, 5935, 2014.

26. Zhao, Y., X.Y. Cao, J. Gao, X. Yao, T. Liu, W. Q. Li, and S. J. Li, "Broadband low-RCS metasurface and its application on antenna," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 2954-2962, 2016.
doi:10.1109/TAP.2016.2562665

27. Hao, Y. W., Y. Liu, K. Li, and S. X. Gong, "Wideband radar cross-section reduction of microstrip patch antenna with split-ring resonators," Electronics Letters, Vol. 51, No. 20, 2015.
doi:10.1049/el.2015.1725