Vol. 76
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-28
A Moment-Based Study on the Impedance Effect of Mutual Coupling for VLF Umbrella Antenna Arrays
By
Progress In Electromagnetics Research C, Vol. 76, 75-86, 2017
Abstract
The mutual coupling between very low frequency (VLF) antenna elements is an important factor affecting the radiation performance of umbrella antenna arrays. This study evaluates the factors influencing the mutual coupling between the elements of an umbrella antenna array. We develop a mutual coupling analysis method for calculating the input impedances of a VLF antenna based on the impedance effect of mutual coupling. The radiation resistance of the VLF umbrella antenna can be obtained using numeric integral from Method of Moments (MoM) solution. Using the FEKO simulation software, a model of a trideco-tower umbrella antenna array is established. The electrical parameters of the VLF umbrella antenna array on inhomogeneous ground are calculated for both single and dual feeding modes. The impedance characteristics of the umbrella antenna arrays are also simulated for different array inter-element spacings on homogeneous ground. Representative numerical results are reported and discussed to assess the mutual coupling effect of the proposed method in comparison with full-wave simulations.
Citation
Bin Li Chao Liu Huaning Wu , "A Moment-Based Study on the Impedance Effect of Mutual Coupling for VLF Umbrella Antenna Arrays," Progress In Electromagnetics Research C, Vol. 76, 75-86, 2017.
doi:10.2528/PIERC17061702
http://www.jpier.org/PIERC/pier.php?paper=17061702
References

1. Li, H.-Y., J. Zhan, Z.-S. Wu, and P. Kong, "Numerical simulations of ELF/VLF wave generated by modulated beat-wave ionospheric heating in high latitude regions," Progress In Electromagnetics Research M, Vol. 50, 55-63, 2016.
doi:10.2528/PIERM16062604

2. James, M., "Stripping very low frequency communication signals with minimum shift keying encoding from streamed time-domain electromagnetic data," Geophysics, Vol. 80, No. 6, 343-353, 2015.
doi:10.1190/geo2015-0304.1

3. Aizebeokhai, A. P. and K. D. Oyeyemi, "Application of geoelectrical resistivity imaging and VLF-EM for subsurface characterization in a sedimentary terrain, Southwestern Nigeria," Arabian Journal of Geosciences, Vol. 8, No. 6, 4083-4099, 2015.
doi:10.1007/s12517-014-1482-z

4. Hurdsman, D. E., P. M. Hansen, and J. W. Rockway, "LF and VLF antenna modeling," Antennas and Propagation Society International Symposium, Vol. 4, 811-814, IEEE, 2003.

5. Liu, C., Q. Z. Liu, L. G Zheng, and W. Yu, "Numeric calculation of input impedance for a giant VLF T-type antenna array," Progress In Electromagnetics Research, Vol. 75, 1-10, 2007.
doi:10.2528/PIER07051701

6. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Antennas and Propagation Magazine, Vol. 46, No. 6, 9-22, 2004.
doi:10.1109/MAP.2004.1396731

7. Li, H. F. and C. Liu, "Calculation on characteristics of VLF umbrella inverted-cone transmitting antenna," 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), 389-391, Shanghai, 2014.
doi:10.1109/ICUFN.2014.6876819

8. Li, H. and C. Liu, "Calculation on characteristics of VLF umbrella inverted-cone transmitting antenna," International Conference on Ubiquitous & Future Networks, 389-391, IEEE, July 2014.

9. Dong, Y., C. Liu, G. Dai, and Y. Yan, "VLF transmit antenna impedance characteristic based on top-Load configuration," Dianbo Kexue Xuebao/Chinese Journal of Radio Science, Vol. 29, No. 4, 763-768, 2014.

10. Liang, Z. X., et al., "Improved hybrid leapfrog ADI-FDTD method for simulating near-field coupling effects among multiple thin wire monopole antennas on a complex platform," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 618-626, 2017.
doi:10.1109/TEMC.2016.2632129

11. Kurs, A., et al., "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, AAAS, 2007.
doi:10.1126/science.1143254

12. Huang, Q., H. Zhou, and X.-W. Shi, "A new compensating method for the mutual coupling effect in adaptive antenna arrays composed of wire elements," Progress In Electromagnetics Research C, Vol. 35, 221-236, 2013.
doi:10.2528/PIERC12110804

13. Youndo, T., P. Jongmin, and N. Sangwook, "Mode-based analysis of resonant characteristics for near-field coupled small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 4, 1238-1241, IEEE, 2009.
doi:10.1109/LAWP.2009.2036133

14. Fallahi, R. and M. Roshandel, "Effect of mutual coupling and configuration of concentric circular array antenna on the signal-to-interference performance in CDMA systems," Progress In Electromagnetics Research, Vol. 76, 427-447, 2007.
doi:10.2528/PIER07070104

15. Liao, B. and S. C. Chan, "A cumulant-based method for direction finding in uniform linear array with mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1717-1720, IEEE, August 2014.
doi:10.1109/LAWP.2014.2352939

16. Gupta, I. J. and A. A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, September 1983.
doi:10.1109/TAP.1983.1143128

17. Su, T. and L. Hao, "On modeling mutual coupling in antenna arrays using the coupling matrix," Microwave and Optical Technology Letters, Vol. 28, No. 4, 232-237, February 2001.
doi:10.1002/1098-2760(20010220)28:4<231::AID-MOP1004>3.0.CO;2-P

18. Ralchenko, M., M. Roper, M. Svilans, and C. Samson, "Coupling of very low frequency through-the- Earth radio signals to elongated conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3146-3153, 2017.
doi:10.1109/TAP.2017.2694758

19. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley Press, Hoboken, 2016.

20. Rueda, C. I. P. and R. B. Miller, "A new approximate closed solution for small dipole antenna with method of moments," IEEE Latin America Transactions, Vol. 14, No. 4, 1562-1569, IEEE, 2016.
doi:10.1109/TLA.2016.7483483

21. He, Q. Q. and B. Z. Wang, "Design of microstrip array antenna by using active element pattern technique combining with Taylor synthesis method," Progress In Electromagnetics Research, Vol. 80, 63-76, 2008.
doi:10.2528/PIER07103006

22. Carlo, F. M. C. and B. Alessio, "Electromotive force induced in and inductance of an electrically small circular loop antenna," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 780-783, August 2014.
doi:10.1109/TEMC.2013.2280661

23. Carobbi, C. F. M. and A. Bonci, "Electromotive force induced in and inductance of an electrically small circular loop antenna," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 780-783, 2012.
doi:10.1109/TEMC.2013.2280661

24. Liu, C., H. Jiang, and J. H. Huang, Very Low Frequency Communication, Haichao Press, Beijing, 2008.

25. Jobava, R. G., et al., "Simulation of low-frequency magnetic fields in automotive EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1420-1430, 2014.
doi:10.1109/TEMC.2014.2325134

26. Taylor, D. and P. Loschialpo, "Imaging of helical surface wavemodes in the near field," Journal of Electromagnetic Waves and Application, Vol. 17, No. 11, 1593-1604, 2003.
doi:10.1163/156939303772681451

27. Ubeda, E., J. M.Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4171-4186, 2014.
doi:10.1109/TAP.2014.2325954

28. Miller, E. K. and F. J. Dearick, "Some computational aspects of thin-wire modeling," Numerical and Asymptotic Techniques in Electromagnetics, Vol. 3, 89-127, Springer-Verlag, New York, July 2005.

29. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

30. Huang, Q. L., Electrical Power Engineer’s Handbook, China Electric Power Press, Beijing, 2002.

31. Hansen, P. and J. Chavez, VLF Cutler: September 1997, Four-Panel Tests; RADHAZ and Field Strength Measurement, Space and Naval Warfare Systems Center, San Diego, 1997.

32. Hansen, P., "Terrestrial antenna for high power VLF radiation into the magnetosphere," General Assembly and Scientific Symposium (URSI GASS), 1-4, Beijing, 2014.