Vol. 77
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-08-27
A 2.45 GHz ISM Band CPW Rectenna for Low Power Levels
By
Progress In Electromagnetics Research C, Vol. 77, 101-110, 2017
Abstract
This paper presents the design and fabrication of a coplanar waveguide (CPW) rectenna using a sequential modular approach. The rectenna is printed on high permittivity, low-loss board ARLON AD1000 (εr = 10.35 and tanδ = 0.0023 @ 10 GHz). The recti er section is realized with a single reverse-biased schottky diode SMS-7630 in reverse topology for which a diode model is obtained at -20 dBm for frequencies F0 = 2.45 GHz and 2F0= 4.9 GHz. The low-pass lter and the impedance matching are synthesized from passive CPW structures. Co-simulation technique is used to overcome CPW simulation limitation and to integrate the diode characteristic. The antenna consists of a circular slot loop antenna with stub matching such that its input impedance is close to 50 Ω. The goal of this work is to design a rectifier to simplify and speed up the fabrication process of a rectenna array. We reduced the number of processes to etch the rectifier on the board and minimized the number of lumped elements. At -20 dBm, simulation of the rectifier with an ideal impedance matching network shows rectification at 2.45 GHz with efficiency of 12.8%. The rectifier and rectenna shows efficiency of approximately 10% at an operating frequency of 2.48 GHz.
Citation
Jerome Riviere, Alexandre Douyère, Shailendra Oree, and Jean-Daniel Lan Sun Luk, "A 2.45 GHz ISM Band CPW Rectenna for Low Power Levels," Progress In Electromagnetics Research C, Vol. 77, 101-110, 2017.
doi:10.2528/PIERC17070401
References

1. Cheng, L., Y. Zhang, T. Lin, and Q. Ye, "Integration of wireless sensor networks, wireless local area networks and the Internet," IEEE International Conference on Networking, Sensing and Control, Vol. 1, 462-467, 2004.
doi:10.1109/ICNSC.2004.1297482

2. Bhushan, N., J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T. Sukhavasi, C. Patel, and S. Geirhofer, "Network densification: The dominant theme for wireless evolution into 5G," IEEE Communications Magazine, Vol. 52, 82-89, 2014.
doi:10.1109/MCOM.2014.6736747

3. Lu, P., X. S. Yang, J. L. Li, and B. Z. Wang, "A polarization-reconfigurable rectenna for microwave power transmission," iWAT IEEE, 120-122, 2015.

4. Monti, G., L. Gorchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 2012.
doi:10.2528/PIERC12082813

5. Nurzaimah, Z., Z. Zahriladha, A. Maisarah, M. S. Jawad, and M. M. Yunus, "Comparative study of antenna designs with harmonic suppression for wireless power transfer," World Applied Sciences Journal, Vol. 33, 380-392, 2015.

6. Nie, M. J., X. X. Yang, G. N. Tan, and B. Han, "A compact 2.45-GHz broadband rectenna using grounded coplanar waveguide," AWPL, Vol. 14, 986-989, 2015.

7. Georgiadis, A., A. Collado, S. Via, and C. Meneses, "Flexible hybrid solar/EM energy harvester for autonomous sensors," MTT-S, 1-4, 2011.

8. Huang, Y. C., G.-P. Pan, T. L. Li, and J. S. Sun, "Polarized rectenna for wireless power transmission," APEMC, 1-4, 2015.

9. Riviere, J., A. Douyere, and J. D. Lan Sun Luk, "Analyse des performances dun rseau de rectennas miniatures pour la tl-alimentation de dispositifs faible consommation," JNM, 2015.

10. SKYWORKS "Surface mount mixer and detector schottky diodes,", 2013.

11. AGILENT "Applying the 8510 TRL calibration for non-coaxial measurements,", Product Note 8510-8A.

12. Adami, S. E., D. Zhu, L. Yi, E. Mellios, B. H. Stark, and S. Beeby, "2.45 GHz rectenna screenprinted on polycotton for on-body RF power transfer and harvesting," IEEE, ISBN 978-1-4673-7447-7, 2015.

13. Zhu, N., K. Chang, M. Tuo, P. Jin, H. Hao, and R. W. Ziolkowski, "Design of a high-efficiency rectenna for 1.575GHz wireless low power transmission," RWS, 90-93, 2011.

14. Harouni, Z., L. Osman, and A. Gharsallah, "Efficient 2.45 GHz rectenna design with high harmonics rejection for wireless power transmission," IJCSI, Vol. 7, 2010.

15. Schaefer, R., "Challenges and solutions for removing fixture effects in multi-port measurements,", DesignCon, 2008.

16. Emerson, D. T. and A. R. Thompson, "Relative sensitivity of full-wave and half-wave detectors in radiometry," Radio SCi., Vol. 38, 2003.
doi:10.1029/2002RS002721

17. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, 3rd Ed., 420, 2013.

18. Wang, S. N. and N. W. Chen, "Compact, ultra-broadband coplanar waveguide bandpass filter with excellent stopband rejection," Progress In Electromagnetics Research B, Vol. 17, 15-18, 2009.
doi:10.2528/PIERB09071008

19. Simons, R. N., Coplanar Waveguide Circuits, Components, and System, Wiley Series in Microwave and Optical Engineering, ISBN 978-0-471-16121-9, 2001.
doi:10.1002/0471224758

20., ROHDE & SCHWARZ, RF Signal Generator R&S SM300, 2007.

21. Riviere, J., A. Douyere, and J. D. Lan Sun Luk, "Design of a CPW fed circular slot loop antenna for DF/DC rectifier at low power level," Radio, 2016.