Vol. 80
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-22
Feasibility Study of Frequency Selective Surfaces for Structural Health Monitoring System
By
Progress In Electromagnetics Research C, Vol. 80, 199-209, 2018
Abstract
A new type of three-dimensional (3D) Frequency Selective Surfaces (FSS) applied to passive sensing in Structural Health Monitoring (SHM) is presented. Such passive FSS sensors are proposed as an alternative to conventional sensors to eliminate the need of DC/AC power. Moreover, these FSSs are modified in a 3D form to feature enhanced performance compared to conventional FSSs and sensors. More specifically, the proposed 3D FSS is able to control its sensitivity |S21| in either TE or TM incident waves. In this project, incident angle characteristics are evaluated for SHM applications to obtain angular responses of up to 80 degrees. The resonant behavior of the TE-incident wave is shown to be sensitive towards the incident angle and is suitable to be used for monitoring any building tilting and damage. This is due to the significant 3D length changes of the conductor elements. Meanwhile, the TM-incident wave is found to be insensitive towards the incident angle.
Citation
Syaiful Anas Suhaimi Saidatul Norlyana Azemi Ping Jack Soh , "Feasibility Study of Frequency Selective Surfaces for Structural Health Monitoring System," Progress In Electromagnetics Research C, Vol. 80, 199-209, 2018.
doi:10.2528/PIERC17081802
http://www.jpier.org/PIERC/pier.php?paper=17081802
References

1. Ikemoto, Y., S. Suzuki, H. Okamoto, H. Murakami, H. Asama, S. Morishita, T. Mishima, X. Lin, and H. Itoh, "Force sensor system for structural health monitoring using passive RFID tags," 2nd IEEE Int. Interdiscip. Conf. Portable Inf. Devices 2008 7th IEEE Conf. Polym. Adhes. Microelectron. Photonics, Vol. 29, No. 2, 1-6, Garmish-Partenkirchen, 2008.

2. Jiang, X., Y. Tang, and Y. Lei, "Wireless sensor networks in structural health monitoring based on ZigBee technology," 3rd Int. Conf. Anti-counterfeiting, Secur. Identif. Commun., 449-452, 2009.

3. Tan, A. C., M. Kaphle, and D. Thambiratnam, "Structural health monitoring of bridges using acoustic emission technology," 2009 8th Int. Conf. Reliab. Maintainab. Saf., No. C, 839-843, 2009.
doi:10.1109/ICRMS.2009.5269952

4. Lovejoy, S. C., "Acoustic emission testing of beams to simulate SHM of vintage reinforced concrete deck girder highway bridges," Struct. Heal. Monit., Vol. 7, No. 4, 329-346, 2008.
doi:10.1177/1475921708090567

5. Lopez-Higuera, J. M., L. Rodriguez Cobo, A. Quintela Incera, and A. Cobo, "Fiber optic sensors in structural health monitoring," J. Light. Technol., Vol. 29, No. 4, 587-608, 2011.
doi:10.1109/JLT.2011.2106479

6. Pieper, D., K. M. Donnell, O. Abdelkarim, and M. A. ElGawady, "Embedded FSS sensing for structural health monitoring of bridge columns," IEEE Int. Instrum. Meas. Technol. Conf. Proceeding, 1-5, 2016.

7. Pavia, J. P., W. J. Otter, S. Lucyszyn, and M. A. Ribeiro, "Design of a THz-MEMS frequency selective surface for structural health monitoring," International Conference on Meta, 2016.

8. Jang, S.-D. and J. Kim, "Wireless structural sensor made with frequency selective surface antenna," Proc. SPIE — Int. Soc. Opt. Eng., Vol. 8344, 1-7, 2012.

9. Suhaimi, S. A., S. N. Azemi, and S. P. Jack, "Structural health monitoring system using 3D frequency selective surface," IEEE Asia-Pacific Conf. Appl. Electromagn., 145-149, 2016.

10. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "3D frequency selective surfaces with wideband response," Int. Work. Antenna Technol. Small Antennas, Nov. EM Struct. Mater. Appl. 2014, 212-215, IEEE, 2014.
doi:10.1109/IWAT.2014.6958641

11. Zheng, S. F., Y. Z. Yin, H. L. Zheng, Z. Y. Liu, and A. F. Sun, "Convoluted and interdigitated hexagon loop unit cells for frequency selective surfaces," Electron. Lett., Vol. 47, No. 4, 233, 2011.
doi:10.1049/el.2010.7407

12. Fauzi, N. A.M., M. Z. A. A. Aziz, M. A.M. Said, M. A.Othman, and B. H. Ahmad, "Investigation of impedance modeling for a unit cell of the circle loop frequency selective surface at 2.40Hz," IEEE Int. Conf. Control Syst. Comput. Eng., 28-30, Nov. 2014.

13. Ratnaratorn, C., C. Mahatthanajatuphat, and P. Akkaraekthalin, "Gain enhancement for multiband antenna with frequency selective fractal surface reflector," Proc. Asia Pacific Microw. Conf. 2014, Vol. 714–716, 6-8, 2014.

14. Lee, Y. S., F. Malek, and F. H. Wee, "Investigate FSS structure effect on WiFi signal," 5th IET Int. Conf. Wireless, Mob. Multimed. Networks (ICWMMN 2013), 331-334, Beijing, 2013.

15. Seman, F. C. and N. K. Khalid, "Investigations on fractal square loop FSS at oblique incidence for GSM applications," 2014 Electr. Power, Electron. Commun. Control. Informatics Semin. Investig., 62-66, 2014.
doi:10.1109/EECCIS.2014.7003720

16. Aziz, M. Z. A. A., M. M. Shukor, B. H. Ahmad, M. K. Suaidi, M. F. Johar, M. A. Othman, S. N. Salleh, F. A. Azmin, and M. F. A. Malek, "Investigation of a square loop frequency selective surface (FSS) on hybrid material at 2.4GHz," Proc. — 2013 IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE, 275-278, 2013.
doi:10.1109/ICCSCE.2013.6719973

17. Hong, J. and M. J. Lancaster, Microstrip Filters for RF/Microwave, Vol. 7, 2001.
doi:10.1002/0471221619

18. Costa, F., A. Monorchio, and G. Manara, "An equivalent circuit model of frequency selective surfaces embedded within dielectric layers," 2009 IEEE Antennas Propag. Soc. Int. Symp. Charleston, No. 1, 0-3, SC, 2009.

19. Ferreira, D., R. F. S. Caldeirinha, I. Cuinas, and T. R. Fernandes, "Square loop and slot frequency selective surfaces study for equivalent circuit model optimization," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 3947-3955, 2015.
doi:10.1109/TAP.2015.2444420

20. Sung, G. H., K. W. Sowerby, M. J. Neve, and A. G. Williamson, "Frequency-selective wall for interference reduction in wireless indoor environments," IEEE Antennas Propag. Mag., Vol. 48, No. 5, 29-37, 2006.
doi:10.1109/MAP.2006.277152

21. Hamdy, S. and E. Parker, "Current distribution on the elements of a square loop frequency selective surface," Electron. Lett., Vol. 18, No. 14, 624-626, 1982.
doi:10.1049/el:19820427

22. Azemi, S. N. and W. S. T. Rowe, "Development and analysis of 3D frequency selective surfaces," 2011 Asia-Pacific Microw. Conf. Proc., 693-696, 2011.

23. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "3D frequency selective surface," Progress In Electromagnetics Research C, Vol. 29, 191-203, 2012.
doi:10.2528/PIERC12033006

24. Erdogan, L., C. Akyel, and F. M. Ghannouchi, "Dielectric properties of oil sands at 2.45 GHz determined by a rectangular cavity resonator," J. Microw. Power Electromagn. Energy, Vol. 45, No. 1, 15-23, 2011.
doi:10.1080/08327823.2011.11689794