Vol. 80
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-27
An Optimization-Based Design Technique for Multi-Band Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 80, 1-12, 2018
Abstract
Matching networks for dual-band power amplifiers typically rely on complex, non-general techniques, which either use switches or result in large and lossy matching networks. In this work, mathematical optimization is employed to design the matching networks for multi-band power amplifiers. The theory of continuous modes is utilized together with accurate models for the device package to define the required impedance terminations theoretically thus allowing mathematical optimization to be used for the design. This technique depends on neither the network architecture nor the number of frequency bands. Therefore, simple and compact multi-band matching networks can be achieved. As proof of concept, a triple-band amplifier at 0.8, 1.8, and 2.4 GHz has been designed using the proposed method. The fabricated amplifier demonstrates maximum power added efficiencies of 70%, 60%, and 58% and output powers of 40 dBm, 41 dBm and 40 dBm for the three frequency bands, respectively. The presented design approach is highly suitable for the next generation of wireless systems.
Citation
Eyad Arabi Peter Bagot Souheil Bensmida Kevin Morris Mark Beach , "An Optimization-Based Design Technique for Multi-Band Power Amplifiers," Progress In Electromagnetics Research C, Vol. 80, 1-12, 2018.
doi:10.2528/PIERC17090601
http://www.jpier.org/PIERC/pier.php?paper=17090601
References

1. Fukuda, A., H. Okazaki, S. Narahashi, T. Hirota, and Y. Yamao, "A 900/1500/2000-MHz tripleband reconfigurable power amplifier employing RF-MEMS switches," IEEE MTT-S International Microwave Symposium Digest 2005, 4, Jun. 2005.

2. Sessou, K. K. and N. M. Neihart, "An integrated 700–1200-MHz class-F PA with tunable harmonic terminations in 0.13-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, 1315-1323, Apr. 2015.
doi:10.1109/TMTT.2015.2403843

3. Fukuda, A., H. Okazaki, S. Narahashi, and T. Nojima, "Concurrent multi-band power amplifier employing multi-section impedance transformer," 2011 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), 37-40, Jan. 2011.
doi:10.1109/PAWR.2011.5725389

4. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "A design technique for concurrent dualband harmonic tuned power amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 2545-2555, Nov. 2008.
doi:10.1109/TMTT.2008.2004897

5. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "A new design strategy for multi frequencies passive matching networks," 2007 European Microwave Conference, 838-841, Oct. 2007.

6. Negra, R., A. Sadeve, S. Bensmida, and F. M. Ghannouchi, "Concurrent dual-band class-F load coupling network for applications at 1.7 and 2.14 GHz," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 55, 259-263, Mar. 2008.
doi:10.1109/TCSII.2008.918993

7. Carrubba, V., S. Maroldt, M. Muer, H. Walcher, F. Van Raay, R. Quay, O. Ambacher, D. Wiegner, U. Seyfried, T. Bohn, and A. Pascht, "Realization of a 30-W highly efficient and linear reconfigurable dual-band power amplifier using the continuous mode approach," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 2, 115-128, 2014.
doi:10.1017/S1759078713000937

8. Fu, X., D. T. Bespalko, and S. Boumaiza, "Novel dual-band matching network for effective design of concurrent dual-band power amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 61, 293-301, Jan. 2014.
doi:10.1109/TCSI.2013.2268132

9. Arabi, E., P. D. Falco, J. Birchall, K. Morris, and M. Beach, "Design of a triple-band power amplifier using a genetic algorithm and the continuous mode method," IEEE Radio Wireless Week, Feb. 2017.

10. Cripps, S. C., P. J. Tasker, A. L. Clarke, J. Lees, and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 19, 665-667, Oct. 2009.

11. Cripps, S. C., Advanced Techniques in RF Power Amplifier Design, Artech House, Norwood, MA, 2002.

12. Ozen, M., R. Jos, and C. Fager, "Continuous class-E power amplifier modes," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 59, 731-735, Nov. 2012.

13. Gu, L., W. Che, S. Chen, M. Zhang, Q. Cai, and Q. Xue, "Dual-band GaN power amplifiers with novel DC biasing networks incorporating offset DSPSL," 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AM, 1-4, Jul. 2015.

14. Xuan, A. N. and R. Negra, "Design of concurrent multiband biasing networks for multiband RF power amplifiers," 2012 42nd European Microwave Conference (EuMC), 1-4, Oct. 2012.

15. Salomon, R., "Evolutionary algorithms and gradient search: Similarities and differences," IEEE Transactions on Evolutionary Computation, Vol. 2, 45-55, Jul. 1998.
doi:10.1109/4235.728207

16. Pang, J., S. He, C. Huang, Z. Dai, C. Li, and J. Peng, "A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits," IEEE Microwave and Wireless Components Letters, Vol. 26, 137-139, Feb. 2016.
doi:10.1109/LMWC.2016.2517334

17. Chen, P., S. He, X. Wang, and Z. Dai, "1.7/2.6GHz high-efficiency concurrent dual-band power amplifier with dual-band harmonic wave controlled transformer," Electronics Letters, Vol. 50, 184-185, Jan. 2014.
doi:10.1049/el.2013.3781

18. Wang, Z. and C. W. Park, "Concurrent tri-band GaN HEMT power amplifier using resonators in both input and output matching networks," 2012 IEEE 13th Annual Wireless and Microwave Technology Conference (WAMICON), 1-4, Apr. 2012.