Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-01-29

Compact Dual-Wideband Bandpass Filter Using CSRR Based Extended Right/Left-Handed Transmission Line

By Parya Fathi, Zahra Atlasbaf, and Keyvan Forooraghi
Progress In Electromagnetics Research C, Vol. 81, 21-30, 2018
doi:10.2528/PIERC17100206

Abstract

In this paper a miniaturized dual wideband bandpass filter is designed by the modified extended composite right/left-handed transmission line (ECRLH-TL) under balanced conditions in each right/left-hand passbands. A novel equivalent circuit is proposed to provide the design and an implementation of ECRLH unit-cell by means of the complementary, split ring resonator (CSRR) on the ground plane. Since CSRR is utilized as an alternative to implementing one of the resonators of ECRLH unit-cell, the size and complexity of the structure can be consequently reduced. An example of a dual band pass filter with 3 dB frequency bands from 3.2 to 4.8 GHz and from 6 to 7 GHz is investigated. There is a good agreement among circuit, electromagnetic simulations and measured results in both passbands. The measured insertion loss is better than 0.5 and 1 dB in first and second bands central frequency, respectively. The group delay which is an important factor in wideband communications is about 0.62 ns and 0.71 ns, respectively, in the first and second band central frequencies. The final dimensions of the miniaturized filter are reduced to 8.88 mm X 8.18 mm.

Citation


Parya Fathi, Zahra Atlasbaf, and Keyvan Forooraghi, "Compact Dual-Wideband Bandpass Filter Using CSRR Based Extended Right/Left-Handed Transmission Line," Progress In Electromagnetics Research C, Vol. 81, 21-30, 2018.
doi:10.2528/PIERC17100206
http://www.jpier.org/PIERC/pier.php?paper=17100206

References


    1. Liu, Y. and W. Dou, "A dual-band filter realized by alternately connecting the main transmission-line with shunt stubs and shunt serial resonators," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 5, 296-298, 2009.
    doi:10.1109/LMWC.2009.2017594

    2. Li, X., Y. Zhang, J. Xie, X. Zhang, Y. Tian, and Y. Fan, "Dual band bandpass filter using meander split loop resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2490-2493, 2017.
    doi:10.1002/mop.30762

    3. Kim, C., T. Hyeon Lee, B. Shrestha, and K. Chul Son, "Miniaturized dual-band bandpass filter based on stepped impedance resonators," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1116-1119, 2017.
    doi:10.1002/mop.30481

    4. Firmansyah, T., S. Praptodinoyo, R. Wiryadinata, S. Suhendar, S. Wardoyo, A. Alimuddin, C. Chairunissa, M. Alaydrus, and G. Wibisono, "Dual-wideband band pass filter using folded cross-stub stepped impedance resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2929-2934, 2017.
    doi:10.1002/mop.30848

    5. Feng, W., Y. Zhang, and W. Che, "Tunable dual-band filter and diplexer based on folded open loop ring resonators," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 64, No. 9, 1047-1051, 2017.
    doi:10.1109/TCSII.2016.2634555

    6. An, B., G. Chaudhary, and Y. Jeong, "Size reduction of composite right/left handed transmission line and its application to the design of dual-band bandpass filter," Microw. Opt. Technol. Lett., Vol. 59, No. 9, 2272-2276, 2017.
    doi:10.1002/mop.30724

    7. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically LC loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
    doi:10.1109/TMTT.2002.805197

    8. Caloz, C., A. Sanada, and T. Itoh, "Microwave circuits based on negative refractive index material structures," 33rd Eur. Microw. Conf. 2003, No. c, 2003.

    9. Norooziarab, M., Z. Atlasbaf, and F. Farzami, "Substrate integrated waveguide loaded by 3-dimensional embedded split ring resonators," AEU-International J. Electron. Commun., Vol. 68, No. 7, 658-660, 2014.
    doi:10.1016/j.aeue.2014.02.008

    10. Keshavarzi, S. and Z. Atlasbaf, "Switchable bandpass filter using CRLH cells based on a new kind of admittance inverter," Int. J. Microw. Wirel. Technol., Vol. 9, No. 1, 61-69, 2017.
    doi:10.1017/S1759078715001488

    11. Kahng, S. and J. Ju, "Design of the UWB bandpass filter based on the 1 cell of microstrip CRLHTL," 2008 Int. Conf. Microw. Millim. Wave Technol. Proceedings, ICMMT, Vol. 1, 69-72, 2008.
    doi:10.1109/ICMMT.2008.4540303

    12. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
    doi:10.2528/PIER10070403

    13. Rennings, A., S. Otto, J. Mosig, C. Caloz, and I. Wolff, "Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line," Microwave Conference, 2006. APMC 2006. Asia-Pacific, 1405-1408, 2006.
    doi:10.1109/APMC.2006.4429669

    14. Eleftheriades, G. V. and A. Abstract, "A generalized negative-refractive-index transmission-line (NRI-TL) metamaterial for dual-band and quad-band applications," Microw. Wirel. Components Lett. IEEE, Vol. 17, No. 6, 415-417, 2007.
    doi:10.1109/LMWC.2007.897786

    15. Caloz, C., "Dual composite right/left-handed (D-CRLH) transmission line metamaterial," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 11, 585-587, 2006.
    doi:10.1109/LMWC.2006.884773

    16. Studniberg, M. and G. V. Eleftheriades, "A dual-band bandpass filter based on generalized negative-refractive-index transmission-lines," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 1, 2009-2011, 2009.

    17. Duran-Sindreu, M., J. Bonache, and F. Martin, "Compact CPW dual-band bandpass filters based on semi-lumped elements and metamaterial concepts," 2010 Asia-Pacific Microw. Conf., Vol. 1, No. c, 670-673, 2010.

    18. Duran-Sindreu, M., G. Siso, J. Bonache, and F. Martin, "Planar multi-band microwave components based on the generalized composite right/left handed transmission line concept," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, Part 2, 3882-3891, 2010.

    19. Duran-Sindreu, M., J. Bonache, F. Martin, T. Itoh, P. B. Structures, and P. Components, "Single-layer fully-planar extended-composite right-/left-handed transmission lines based on substrate integrated waveguides for dual-band and quad-band applications," Int. J. Microw. Wirel. Technol., Vol. 5, No. 03, 213-220, 2013.
    doi:10.1017/S1759078713000433

    20. Boutejdar, A., M. Challal, A. Omar, E. Burte, R. Mikuta, and A. Azrar, "A novel band-stop filter using octagonal-shaped patterned ground structures along with interdigital and compensated capacitors," ACES Journal --- The Appl. Comput. Electromagn. Issue, Vol. 26, No. 10, 2011.

    21. Boutejdar, A., A. Omar, and E. Burte, "High-performance wide stop band low-pass filter using a vertically coupled DGS-DMS-resonators and interdigital capacitor," Microw. Opt. Technol. Lett., Vol. 56, No. 1, 87-91, 2014.
    doi:10.1002/mop.28031

    22. Ryan, C. G. M. and G. V. Eleftheriades, "Design of a printed dual-band coupled-line coupler with generalised negative-refractive index transmission lines," IET Microwaves, Antennas Propag., Vol. 6, No. 6, 705, 2012.
    doi:10.1049/iet-map.2011.0508

    23. Marques, R., F. Martın, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Vol. 183, John Wiley & Sons, 2011.

    24. Fathi, P., Z. Atlasbaf, and K. Forooraghi, "Modified extended composite right/left-handed layout loaded with CSRR for quad band applications," Progress In Electromagnetics Research Letters, Vol. 61, 7-12, 2016.
    doi:10.2528/PIERL16030404

    25. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 10, 543-545, 2006.
    doi:10.1109/LMWC.2006.882400

    26. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
    doi:10.1002/0471754323