Vol. 80
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-12
A Novel Architecture of Millimeter-Wave Full-Duplex Radio-Over -Fiber System with Source-Free Bs Based on Polarization Division Multiplexing and Wavelength Division Multiplexing
By
Progress In Electromagnetics Research C, Vol. 80, 103-110, 2018
Abstract
In this paper, we propose a novel architecture of full-duplex millimeter-wave radio-over-fiber (RoF) system based on polarization division multiplexing (PDM) and wavelength division multiplexing (WDM) technology. In our scheme, the light waves for downlink and uplink transmission are provided by the same laser, which realize the source-free base station (BS) and multi-services transfer for next generation wireless access network. Since the uplink optical carrier is Y-polarized light wave which does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. At the BS, it is detected by a high-speed photoelectric diode (PD) to generate a 15 GHz intermediate frequency (IF) and a 63 GHz radio frequency (RF) signal. This reduces the system complexity and cost. The simulation with 2.5 Gbps NRZ signal transmission exhibits good performance both at 15 GHz (Ku-band) and 63 GHz (V-band).
Citation
Baofeng Chen Yating Wu Mengxin Han Qianwu Zhang , "A Novel Architecture of Millimeter-Wave Full-Duplex Radio-Over -Fiber System with Source-Free Bs Based on Polarization Division Multiplexing and Wavelength Division Multiplexing," Progress In Electromagnetics Research C, Vol. 80, 103-110, 2018.
doi:10.2528/PIERC17102201
http://www.jpier.org/PIERC/pier.php?paper=17102201
References

1. Rohde, H., S. Smolorz, E. Gottwald, and K. Kloppe, "Next generation optical access: 1Gbit/s for everyone," Proceedings of the 35th European Conference and Exhibition on Optical Communication (ECOC), 1-3, 2009.

2. Wells, J., "Faster than fiber: ·The future of multi-Gb/s wireless‘," IEEE Microw. Mag., Vol. 10, No. 3, 104-112, 2009.
doi:10.1109/MMM.2009.932081

3. Zhu, M., L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, "Radio-over-fiber access architecture for integrated broadband wireless services," J. Lightw. Technol., Vol. 31, No. 23, 3614-3620, 2013.
doi:10.1109/JLT.2013.2286564

4. Chang, G. K., et al., "Super-broadband optical wireless access technologies," OFC/NFOEC, OThD1, 2008.

5. Nagatsuma, T., T. Takada, H.-J. Song, K. Ajito, N. Kukutsu, and Y. Kado, "Millimeterand THzwave photonics towards 100-Gbit/s wireless transmission," Proc. of 23rd Annu. Meeting IEEE Photon. Soc., 385-386, 2010.

6. Yong, S.-K., P. Xia, and A. V. Garcia, 60GHz Technology for Gbps WLAN and WPAN: From Theory to Practice, Wiley, New York, NY, USA, 2011.

7. Almeida, P. and H. Silva, "Power optimized OSSB modulation to support multi-band OFDM services along hybrid long-reach WDM-PONs," Opt. Fiber Technol., Vol. 23, 129-136, 2015.
doi:10.1016/j.yofte.2015.03.005

8. Ma, J., J. Yu, C. Yu, X. Xin, and J. Zeng, "Fiber dispersion influence on transmission of the optical millimeter-waves generated by using LN-MZM intensity modulation," J. Lightw. Technol., Vol. 25, No. 11, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794

9. Smith, G. H., D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems," Electron. Lett., Vol. 33, No. 1, 74-75, 1997.
doi:10.1049/el:19970066

10. Zhang, Y. M., F. Z. Zhang, and S. L. Pan, "Optical single sideband modulation With tunable optical carrier-to-sideband ratio," IEEE Photonics Technol. Lett., Vol. 26, No. 7, 2014.

11. Jia, Z., J. Yu, and G.-K. Chang, "A full-duplex radio-over-fiber system based on optical carrier suppression and reuse," IEEE Photon. Technol. Lett., Vol. 18, No. 16, 1726-1728, 2006.
doi:10.1109/LPT.2006.879946

12. Ma, J., "5 Gbit/s full-duplex radio-over-fiber link with optical millimeter-wave generation by quadrupling the frequency of the electrical RF carrier," J. Opt. Commun. Netw., Vol. 3, No. 2, 127-133, 2011.
doi:10.1364/JOCN.3.000127

13. Hsueh, Y., et al., "A novel full-duplex testbed demonstration of converged all-band 60-GHz radio-over-fiber access architecture," OFC/NFOEC, 1-3, 2012.

14. Ma, J., R. Zhang, Y. Li, Q. Zhang, and J. Yu, "Full-duplex RoF link with broadband mmwave signal in W-band based on WDM-PON access network with optical mm-wave local oscillator broadcasting," J. Opt.Commun. Netw., Vol. 4, No. 7, 248-254, 2015.
doi:10.1016/j.optcom.2014.10.014

15. Ma, J., Y. Zhan, M. Zhou, H. Liang, Y. Shao, and C. Yu, "Full-duplex radio over fiber with a centralized optical source for a 60GHz millimeter-wave system with a 10 Gb/s 16-QAM downstream signal based on frequency quadrupling," J. Opt.Commun. Netw., Vol. 4, No. 7, 557-564, 2012.
doi:10.1364/JOCN.4.000557

16. Zhang, R. and J. Ma, "Full-duplex hybrid PON/RoF link with 10-Gbit/s 4-QAM signal for alternative wired and 40-GHz band wireless access based on optical frequency multiplication," Optik, Vol. 138, 55-63, 2017.
doi:10.1016/j.ijleo.2017.03.032

17. Ma, J., "Full-duplex radio over fiber link with colorless source-free base station based on single sideband optical mm-wave signal with polarization rotated optical carrier," Optical Fiber Technology, Vol. 30, 163-166, 2016.
doi:10.1016/j.yofte.2016.04.012

18. Zhang, R., J. Ma, W. Liu, W. Zhou, and Y. Yang, "A multi-band access radio-over-fiber link with SSB optical millimeter-wave signals based on optical carrier suppression modulation," Optical Switching and Networking, Vol. 18, 235-241, 2015.
doi:10.1016/j.osn.2015.08.002