Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-02-13

A Compact Non-Bianisotropic Complementary Split Ring Resonator Inspired Microstrip Triple Band Antenna

By Ramasamy Pandeeswari
Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018
doi:10.2528/PIERC17103009

Abstract

A Compact Non-Bianisotropic Complementary Split Ring Resonator (NB-CSRR) based microstrip triple band antenna is presented in this paper. The antenna has a simple structure compared to other antennas for triple band operation. The antenna consists of a microstrip-fed NBCSRR loaded radiating element and partial ground plane. The designed antenna has a compact size of 29.4 mm x 26 mm x 1.6 mm. Two NBCSRR slots are etched on the radiating patch. Bottom NB-CSRR is used to generate new resonance, and top NB-CSRR is used to improve the return loss. The measured data show that the antenna covers the frequency ranges of 2.5 GHz-3.61 GHz, 4.06 GHz-4.69 GHz, 4.80 GHz-6.07 GHz with impedance bandwidth of (<-10 dB) of 1.11 GHz, 0.63 GHz and 1.27 GHz. The results show that the antenna can cover WLAN and C band applications.

Citation


Ramasamy Pandeeswari, "A Compact Non-Bianisotropic Complementary Split Ring Resonator Inspired Microstrip Triple Band Antenna," Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018.
doi:10.2528/PIERC17103009
http://www.jpier.org/PIERC/pier.php?paper=17103009

References


    1. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1178-1181, 2010.
    doi:10.1109/LAWP.2010.2098433

    2. Li, R. L., T. Wu, and M. M. Tentzeris, "A triple-band unidirectional coplanar antenna for 2.4/3.5/5-GHz WLAN/WiMax applications," Proceedings of Antennas Propagation Soc. International Symp., 1, Charleston, SC, Jun. 1-5, 2009.

    3. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, 2015.
    doi:10.1002/mop.29352

    4. Pei, J., A.-G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.
    doi:10.1109/LAWP.2011.2140090

    5. Zhao, Q., S. X. Gong, W. Jiang, B. Yang, and J. Xie, "Compact wide-slot tri-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 18, 9-18, 2010.
    doi:10.2528/PIERL10081601

    6. Liu, N.-W., L. Yang, Z.-Y. Zhang, G. Fu, and Q.-Q. Liu, "A novel face-like triple-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 45, 105-110, 2014.
    doi:10.2528/PIERL14031801

    7. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    8. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, New York, 2005.
    doi:10.1002/0471754323

    9. Joshi, J. G., S. S. Pattnaik, S. Devi, and M. R. Lohokare, "Electrically small patch antenna loaded with metamaterial," IETE Journal of Research, Vol. 56, 373-379, 2011.

    10. Pandeeswari, R. and S. Raghavan, "Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2388-2392, 2014.
    doi:10.1002/mop.28602

    11. Pandeeswari, R. and S. Raghavan, "A CPW-fed triple band OCSRR embedded monopole antenna with modified ground for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 57, 2413-2418, Wiley Interscience, USA, 2015.
    doi:10.1002/mop.29352

    12. Pandeeswari, R. and S. Raghavan, "Microstrip antenna with complementary split ring resonator loaded ground plane for gain enhancement," Microwave and Optical Technology Letters, Vol. 57, No. 2, 292-296, 2015.
    doi:10.1002/mop.28835

    13. Rani, R. B. and S. K. Pandey, "CSRR inspired conductor backed CPW-fed monopole antenna for multiband operation," Progress In Electromagnetics Research C, Vol. 70, 135-143, 2016.
    doi:10.2528/PIERC16102801

    14. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Left offset-fed complementary split ring resonators loaded monopole antenna for multiband operations," Int. J. Electron. Commun. (AEÜ), Vol. 78, 72-78, 2017.
    doi:10.1016/j.aeue.2017.05.016

    15. Si, L. M., W. Zhu, and H. J. Sun, "A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna," IEEE Antennas Wireless Propag. Lett., Vol. 12, 305-308, 2013.
    doi:10.1109/LAWP.2013.2249037

    16. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcfa-Farcfa, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 53, 1451-1461, 2005.
    doi:10.1109/TMTT.2005.845211

    17. Reddy, N. A. and S. Raghavan, "Split ring resonator and its evolved structures over the past decade," Proceedings in (ICE-CCN), 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology, IEEE Explorer, 2013.

    18. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Multiband monopole antenna loaded with complementary split ring resonator and C-shaped slots," Int. J. Electron. Commun. (AEÜ), Vol. 75, 8-14, 2017.
    doi:10.1016/j.aeue.2017.03.001

    19. Ziolkoski, R. W., Design, Fabrication, and Testing of Double Negative Metamaterials, Vol. 51, No. 7, 1516-1529, Jul. 2003.