Vol. 80
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-01-19
T/L-Shaped Zeroth-Order Resonators Loaded Microstrip Antenna with Enhanced Bandwidth for Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 80, 157-166, 2018
Abstract
New zeroth-order resonators (ZORs) are utilized as parasitic elements to enhance a microstrip antenna's bandwidth. By utilizing mushroom T/L shaped resonators, extra resonances are generated. Then, by merging the resonances of the microstrip antenna and the T/L shaped resonators, a wideband antenna is obtained to cover the 5.15-5.35 GHz wireless local area network (WLAN) band. As the ZORs are embedded in the patch of the microstrip antenna, the usages of the parasitic elements do not increase the antenna size. Moreover, as one ZOR resonance is lower than the microstrip patch resonance, a compact antenna is realized. The patch size is decreased from 0.27λc×0.42λc×0.027λc of the reference microstrip antenna (RMA) to 0.25λc×0.40λc×0.026λc of the proposed ZOR based microstrip antenna, where λc is the wavelength of their corresponding lower cutoff frequencies. The proposed antenna was fabricated and measured. The simulated and measured -10 dB impedance bands of the proposed antenna are 5.06-5.40 GHz and 5.07-5.42 GHz, respectively. And, its bandwidth increases 70% compared to the RMA. The simulated and measured patterns are stable in the whole operating band. The gains of 4.73 dBi and 4.24 dBi are measured at the ZOR modes, and 7.88 dBi is measured at the microstrip patch mode.
Citation
Kai Sun Lin Peng Quan Li Xing Jiang , "T/L-Shaped Zeroth-Order Resonators Loaded Microstrip Antenna with Enhanced Bandwidth for Wireless Applications," Progress In Electromagnetics Research C, Vol. 80, 157-166, 2018.
doi:10.2528/PIERC17110303
http://www.jpier.org/PIERC/pier.php?paper=17110303
References

1. Sabban, A., "New wideband printed antennas for medical applications," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 84-91, 2013.
doi:10.1109/TAP.2012.2214993

2. Mandal, K. and P. P. Sarka, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2279-2282, 2013.
doi:10.1109/TAP.2012.2233455

3. Cao, W. Q. and W. Hong, "Bandwidth and gain enhancement for probe-fed CP microstrip antenna by loading with parasitical patches," Progress In Electromagnetics Research Letters, Vol. 61, 47-53, 2016.
doi:10.2528/PIERL16031305

4. Verma, A. K. and Nasimuddin, "Resonance frequency of rectangular microstrip antenna on thick substrate," Electronics Letters, Vol. 37, 1373-1374, 2001.
doi:10.1049/el:20010945

5. Peng, L., C. L. Ruan, and X. H. Wu, "Design and operation of dual/triple-band asymmetric Mshaped microstrip patch antennas," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1069-1072, 2010.
doi:10.1109/LAWP.2010.2091671

6. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research Letters, Vol. 69, 45-50, 2017.
doi:10.2528/PIERL17042703

7. Peng, L., J. Y. Xie, and S. M. Li, "Wideband microstrip antenna loaded by elliptical rings," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 2, 154-166, 2016.
doi:10.1080/09205071.2015.1096837

8. Guha, D., C. Sarkar, and S. Dey, "Wideband high gain antenna realized from simple unloaded single patch," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4562-4566, 2015.
doi:10.1109/TAP.2015.2456942

9. Shetti, N. M., "Waveguide coupled microstrip patch antenna a new approach for broad band antenna," Progress In Electromagnetics Research C, Vol. 72, 73-79, 2017.

10. Yoo, S. and S. Kahng, "CRLH zor antenna of a circular microstrip patch capacitively coupled to a circular shorted ring," Progress In Electromagnetics Research C, Vol. 25, 15-26, 2012.
doi:10.2528/PIERC11072803

11. Peng, L., J. Y. Mao, X. F. Li, X. Jiang, and C. L. Ruan, "Bandwidth of microstrip antenna loaded by parasitic zeroth-order resonators," Microwave and Optical Technology Letters, Vol. 59, No. 5, 2017.
doi:10.1002/mop.30471

12. Ko, S. T. and J. H. Lee, "Wideband folded mushroom zeroth-order resonance antenna," IET Microwaves Antennas & Propagation, Vol. 7, No. 2, 9-84, 2013.
doi:10.1049/iet-map.2012.0340

13. Ko, S.-T. and J.-H. Lee, "Hybrid zeroth-order resonance patch antenna with broad-plane beamwidth," IEEE Trans. Antennas Propag., Vol. 61, 19-25, 2013.
doi:10.1109/TAP.2012.2220315

14. Mehdipour, A., T. A. Denidni, and A.-R. Sebak, "Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 555-563, 2013.
doi:10.1109/TAP.2013.2290791

15. Amani, N. and A. Jafargholi, "Zeroth-order and TM modes in one-unit cell CRLH mushroom resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1396-1399, 2015.
doi:10.1109/LAWP.2015.2407955

16. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials," Optics Express, Vol. 17, No. 23, 21179-90, 2009.
doi:10.1364/OE.17.021179

17. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

18. Schneider, V. M. and H. T. Hattori, "High-tolerance power splitting in symmetric triple-mode evolution couplers," IEEE Journal of Quantum Electronics, Vol. 36, No. 8, 923-930, 2000.
doi:10.1109/3.853545

19. Kapon, E., J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Optics Letters, Vol. 9, No. 4, 125-127, 1984.
doi:10.1364/OL.9.000125

20. Peng, L., J. Y. Xie, X. Jiang, and C. L. Ruan, "Design and analysis of a new ZOR antenna with wide half power beam width (HPBW) characteristic," Frequenz, Vol. 71, No. 1–2, 41-50, 2017.
doi:10.1515/freq-2016-0142