Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-24

Complementary Split Ring Resonator for Isolation Enhancement in 5G Communication Antenna Array

By Raghuraman Selvaraju, Mohd Haizal Jamaluddin, Muhamad Ramlee Kamarudin, Jamal Nasir, and Muhammad Hashim Dahri
Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018
doi:10.2528/PIERC18011019

Abstract

A square-shaped complementary split ring resonator (CSRR) filtering structure for isolation improvement is presented in this paper. The proposed research work investigates the design and development of a simple and compact CSRR structure. In order to verify the performance of the proposed filtering element and improve the isolation among the closely placed antenna elements, arrays of configured CSRR structures are implemented between two antenna elements. An array of configured CSRR elements has been integrated with the printed antenna on the top and bottom layers. The proposed filtering elements offer an enhancement in isolation by 25 dB as compared to the simple array. The entire configuration has been simulated using the Ansoft HFSS simulator. Finally, the proposed design is fabricated and experimentally validated. In the experiment, coupling suppression of -51 dB at the operating frequency is successfully achieved, resulting in a recovery of the array pattern. The proposed antenna is highly efficient, which is suitable to be utilized for 5G communication.

Citation


Raghuraman Selvaraju, Mohd Haizal Jamaluddin, Muhamad Ramlee Kamarudin, Jamal Nasir, and Muhammad Hashim Dahri, "Complementary Split Ring Resonator for Isolation Enhancement in 5G Communication Antenna Array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
doi:10.2528/PIERC18011019
http://www.jpier.org/PIERC/pier.php?paper=18011019

References


    1. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2016.

    2. Hansen, R. C., Microwave Scanning Antennas, R. C. Hansen (ed.), Vol. 1, Academic Press, Apertures, 1964.

    3. Gupta, I. and A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, 1983.
    doi:10.1109/TAP.1983.1143128

    4. Bait-Suwailam, M. M., M. S. Boybay, and O. M. Ramahi, "Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2894-2902, 2010.
    doi:10.1109/TAP.2010.2052560

    5. Pozar, D., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1191-1196, 1982.
    doi:10.1109/TAP.1982.1142934

    6. Bamford, L., J. James, and A. Fray, "Minimising mutual coupling in thick substrate microstrip antenna arrays," Electronics Letters, Vol. 33, No. 8, 648-650, 1997.
    doi:10.1049/el:19970448

    7. Su, T. and H. Ling, "On modeling mutual coupling in antenna arrays using the coupling matrix," Microwave and Optical Technology Letters, Vol. 28, No. 4, 231-237, 2001.
    doi:10.1002/1098-2760(20010220)28:4<231::AID-MOP1004>3.0.CO;2-P

    8. Huang, Z., C. A. Balanis, and C. R. Birtcher, "Mutual coupling compensation in UCAs: Simulations and experiment," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3082-3086, 2006.
    doi:10.1109/TAP.2006.883989

    9. Nasir, J., et al., "A four-eleme linear dielectric resonator antenna array for beamforming applications with compensation of mutual coupling," IEEE Access, Vol. 4, 6427-6437, 2016.
    doi:10.1109/ACCESS.2016.2614334

    10. Segovia-Vargas, D., R. Martin-Cuerdo, and M. Sierra-Perez, "Mutual coupling effects correction in microstrip arrays for Direction-Of-Arrival (DOA) estimation," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 149, No. 2, 113-118, 2002.
    doi:10.1049/ip-map:20020232

    11. Pasala, K. M. and E. M. Friel, "Mutual coupling effects and their reduction in wideband direction of arrival estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, 1116-1122, 1994.
    doi:10.1109/7.328785

    12. Steyskal, H. and J. S. Herd, "Mutual coupling compensation in small array antennas," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 12, 1971-1975, 1990.
    doi:10.1109/8.60990

    13. Jamaluddin, M. H., R. Gillard, R. Sauleau, and M.-A. Milon, "Perturbation technique to analyze mutual coupling in reflectarrays," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 697-700, 2009.
    doi:10.1109/LAWP.2009.2024336

    14. Huang, Q., H. Zhou, J. Bao, and X. Shi, "Calibration of mutual coupling effect for adaptive arrays composed of circularly polarized microstrip antennas," Electromagnetics, Vol. 34, No. 5, 392-401, 2014.
    doi:10.1080/02726343.2014.910371

    15. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    16. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact Electromagnetic-Bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
    doi:10.1109/TMTT.2004.839322

    17. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, 2008.
    doi:10.1109/TAP.2008.923306

    18. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
    doi:10.2528/PIER12121205

    19. Xiao, S., M.-C. Tang, Y.-Y. Bai, S. Gao, and B.-Z.Wang, "Mutual coupling suppression in microstrip array using defected ground structure," IET Microwaves, Antennas & Propagation, Vol. 5, No. 12, 1488-1494, 2011.
    doi:10.1049/iet-map.2010.0154

    20. Wei, K., J. Li, L. Wang, Z. Xing, and R. Xu, "S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling," Electronics Letters, Vol. 52, No. 15, 1288-1290, 2016.
    doi:10.1049/el.2016.0667

    21. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, 2017.

    22. Alsath, M. G. N., M. Kanagasabai, and B. Balasubramanian, "Implementation of slotted meanderline resonators for isolation enhancement in microstrip patch antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 15-18, 2013.
    doi:10.1109/LAWP.2012.2237156

    23. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    24. Khaleel, H. R., H. M. Al-Rizzo, and A. Isaac, "Mutual coupling reduction between flexible mimo antennas," WIT Transactions on State-of-the-art in Science and Engineering, Vol. 82, 105, 2014.
    doi:10.2495/978-1-84564-986-9/006

    25. Hafezifard, R., M. Naser-Moghadasi, J. R. Mohassel, and R. Sadeghzadeh, "Mutual coupling reduction for two closely spaced meander line antennas using metamaterial substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 40-43, 2016.

    26. Ramaraj, M., S. Raghavan, S. Bose, and S. Kumar, "Elliptical split ring resonator: Mathematical analysis, HFSS modeling and genetic algorithm optimization," PIERS Proceedings, 631-635, Moscow, Russia, Aug. 19-23, 2012.

    27. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
    doi:10.1109/LAWP.2010.2074175

    28. Qamar, Z., L. Riaz, M. Chongcheawchamnan, S. A. Khan, and M. F. Shafique, "Slot combined complementary split ring resonators for mutual coupling suppression in microstrip phased arrays," IET Microwaves, Antennas & Propagation, Vol. 8, No. 15, 1261-1267, 2014.
    doi:10.1049/iet-map.2013.0541

    29. Shafique, M. F., Z. Qamar, L. Riaz, R. Saleem, and S. A. Khan, "Coupling suppression in densely packed microstrip arrays using metamaterial structure," Microwave and Optical Technology Letters, Vol. 57, No. 3, 759-763, 2015.
    doi:10.1002/mop.28943

    30. Capolino, F., Theory and Phenomena of Metamaterials, CRC press, 2009.
    doi:10.1201/9781420054262

    31. Pendry, J. B., A. J. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    32. Hsue, C.-W., Y.-W. Chang, and S.-L. Jang, "Comments on babinet’s principle," Forum for Electromagnetic Research Methods and Application Tecchnologies (FERMAT), Vol. 16, No. 3, Jul.-Aug. 2016.

    33. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, 2004.
    doi:10.1109/LMWC.2004.828029

    34. Vendik, I., O. Vendik, and M. Odit, Theory and Phenomena of Metamaterials, Metamaterial Handbook, F. Cappolino (ed.), 2009.

    35. Bahl, I. J. and P. Bhartia, Microwave Solid State Circuit Design, John Wiley & Sons, 2003.

    36. Penciu, R., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. Economou, and C. Soukoulis, "Multigap individual and coupled split-ring resonator structures," Optics Express, Vol. 16, No. 22, 18 131-18 144, 2008.
    doi:10.1364/OE.16.018131

    37. Smith, D., D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617

    38. Hsieh, F.-J., C.-L. Chang, and W.-C. Wang, "Determination of effective constitutive parameters, material boundaries and properties of SRR-rod and fishnet metamaterials by Drude/Lorentz dispersion models," PIERS Proceedings, 136-140, Kuala Lumpur, Malaysia, Mar. 27-30, 2012.