Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-04
Influence of Geometric Simplifications on Lightning Strike Simulations
By
Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018
Abstract
This paper discusses the in fluence of simplifications in models used in the design of electromagnetic protection against indirect effects of lightning strikes. A real and complex test case such as the power plant of an A400M aircraft, simulated with the FDTD method, is chosen for this. The parameters studied are the inclusion/removal of installations, modification of electrical contacts, material properties, and changes in the cable characteristics. The simulations performed allow us to quantify the impact of different simplification approaches and, in consequence, to draw conclusions on the relative importance of different model features, being the most important ones to maintain the electrical contacts, to include installations and cables carrying high currents, to consider different materials, to respect the accurate cable routes or to take care of isolated equipment.
Citation
Guadalupe Gutierrez Gutierrez Sergio Fernandez Romero Monica Gonzaga Enrique Pascual-Gil Luis Diaz Angulo Miguel Ruiz Cabello Salvador Gonzalez Garcia , "Influence of Geometric Simplifications on Lightning Strike Simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.
doi:10.2528/PIERC18011020
http://www.jpier.org/PIERC/pier.php?paper=18011020
References

1. Rakov, V. A. and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press, 2003.
doi:10.1017/CBO9781107340886

2. Fisher, F. A., J. A. Plumer, and R. A. Perala, Aircraft Lightning Protection Handbook, Federal Aviation Administration, September 1989.

3. SAE ARP 5415, rev A, February 2008 / EUROCAE ED-81 rev A1, August 1999, User’s Manual for Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning.

4. AC 20-136B, Protection of Aircraft Electrical/Electronic Systems against the Indirect Effects of Lightning, September 2011.

5. Goodloe, C. C., Lightning Protection Guidelines for Aerospace Vehicle, NASA, May 1999.

6. Odam, G. A. M., A. W. Hanson, and R. H. Evans, Lightning Protection Requirements for Aircraft a Proposed Specification, Defence Research Agency, Controller HMSO London, Revised Issue 1, May 1991.

7. Uman, M. A., The Art and Science of Lightning Protection, Cambridge University Press, 2008.
doi:10.1017/CBO9780511585890

8. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symposium on Electromagnetic Compatibility EMC Europe, York, UK, 2011.

9. Nogueira de Sao Jose, A., A. Colin, J. Fujioka Mologni, G. Maciulis Dip, U. do Carmo Resende, and S. TrindadeMordente Goncalves, "Computational savings based on three-dimensional automotive geometries’ simplifications in electromagnetics simulations," International Conference on Microwave and Optoelectronics, Rio de Janeiro, 2013.

10. Smith, S. M. and C. Furse, "Stochastic FDTD for analysis of statistical variation in electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 60, 3343-3350, July 2012.
doi:10.1109/TAP.2012.2196962

11. Pyrialakos, G., T. Zygiridis, N. Kantartzis, and T. Tsiboukis, "FDTD analysis of 3D lightning FDTD analysis of 3D lightning," Proc. Int. Symp. Electromagnetic Compatibility, 577-582, Sept. 2014.

12., "A400M,", http://militaryaircraft-airbusds.com/aircraft/a400m/a400mabout.aspx.

13., "SEMBA by UGR (2013),", http://www.sembahome.org/.

14. EUROCAE ED-84, Septembre 1997/SAE ARP 5412, rev A, February 2005, Aircraft Lightning Environment and Related Test Waveforms Standard.

15. I. Standard P1557, Standard for Validation of Computational Electromagnetics Computer Modelling and Simulation, Part 1, 2, 2008.

16. Duffy, A., A. Martin, A. Orlandi, G. Antonini, T. Benson, and M. Woolfson, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part I --- The FSV method," IEEE Transactions on Electromagnetics Compatibility, Vol. 48, No. 3, 449-459, August 2006.
doi:10.1109/TEMC.2006.879358

17. Orlandi, A., A. Duffy, B. Archambeault, G. Antonini, D. Coleby, and S. Connor, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Transactions on Electromagnetics Compatibility, Vol. 48, No. 3, 460-467, August 2006.
doi:10.1109/TEMC.2006.879360

18. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 2, 88-97, 1981.
doi:10.1109/TEMC.1981.303899

19. RTCA/DO-160, issue G, December 2010/EUROCAE ED-14, issue G, May 2011, Environmental Conditions and Test Procedures for Airborne Equipment.

20. Serway, R. A., J.W. Jewett, and Jr., Principles of Physics, Brooks/Cole, 2013.

21. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 377-382, November 1981.

22. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.

23., "CATIA by Dassault Systemes,", http://www.3ds.com.

24., "CADfix,", http://www.transcendata.com/products/cadfix/.

25. Garcia, S. G., J. Alvarez, L. D. Angulo, and M. R. Cabello, "UGRFDTD EM solver,", http://www.sembahome.org/.

26. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

27. Berenger, J.-P., "A multiwire formalism for the fdtd method," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.
doi:10.1109/15.865332

28., "HIRF-SE project (2008),", http://hirfse.axessim.eu/.
doi:10.1109/15.865332

29., "Alhambra-UGRFDTD by CSIRC (2013),", https://alhambra.ugr.es/.
doi:10.1109/15.865332

30. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC Europe, 2012.

31. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.
doi:10.1109/TEMC.2013.2291680

32. Gutierrez, G. G., D. M. Romero, M. R. Cabello, E. Pascual-Gil, L. D. Angulo, and S. G. Garcia, "On the design of aircraft electrical structure networks," IEEE Transactions on Electromagnetic Compatibility, Vol. 2, No. 58, 401-408, 2016.
doi:10.1109/TEMC.2016.2514379

33. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
doi:10.2528/PIERL12030206

34. Cabello, M. R., L. D. Angulo, J. Alvarez, I. Flintoft, S. Bourke, J. Dawson, R. G. Martin, and S. G. Garcia, "A hybrid crank-nicolson fdtd subgridding boundary condition for lossy thin-layer modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 1397-1406, 2017.
doi:10.1109/TMTT.2016.2637348

35. Schmidt, S. and G. Lazzi, "Use of the FDTD thin-strut formalism for biomedical telemetry coil designs," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1952-1956, 2004.
doi:10.1109/TMTT.2004.832019