Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-04

Influence of Geometric Simplifications on Lightning Strike Simulations

By Guadalupe Gutierrez Gutierrez, Sergio Fernandez Romero, Monica Gonzaga, Enrique Pascual-Gil, Luis Diaz Angulo, Miguel Ruiz Cabello, and Salvador Gonzalez Garcia
Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018
doi:10.2528/PIERC18011020

Abstract

This paper discusses the in fluence of simplifications in models used in the design of electromagnetic protection against indirect effects of lightning strikes. A real and complex test case such as the power plant of an A400M aircraft, simulated with the FDTD method, is chosen for this. The parameters studied are the inclusion/removal of installations, modification of electrical contacts, material properties, and changes in the cable characteristics. The simulations performed allow us to quantify the impact of different simplification approaches and, in consequence, to draw conclusions on the relative importance of different model features, being the most important ones to maintain the electrical contacts, to include installations and cables carrying high currents, to consider different materials, to respect the accurate cable routes or to take care of isolated equipment.

Citation


Guadalupe Gutierrez Gutierrez, Sergio Fernandez Romero, Monica Gonzaga, Enrique Pascual-Gil, Luis Diaz Angulo, Miguel Ruiz Cabello, and Salvador Gonzalez Garcia, "Influence of Geometric Simplifications on Lightning Strike Simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.
doi:10.2528/PIERC18011020
http://www.jpier.org/PIERC/pier.php?paper=18011020

References


    1. Rakov, V. A. and M. A. Uman, Lightning: Physics and Effects, Cambridge University Press, 2003.
    doi:10.1017/CBO9781107340886

    2. Fisher, F. A., J. A. Plumer, and R. A. Perala, Aircraft Lightning Protection Handbook, Federal Aviation Administration, September 1989.

    3. SAE ARP 5415, rev A, February 2008 / EUROCAE ED-81 rev A1, August 1999, User’s Manual for Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning.

    4. AC 20-136B, Protection of Aircraft Electrical/Electronic Systems against the Indirect Effects of Lightning, September 2011.

    5. Goodloe, C. C., Lightning Protection Guidelines for Aerospace Vehicle, NASA, May 1999.

    6. Odam, G. A. M., A. W. Hanson, and R. H. Evans, Lightning Protection Requirements for Aircraft a Proposed Specification, Defence Research Agency, Controller HMSO London, Revised Issue 1, May 1991.

    7. Uman, M. A., The Art and Science of Lightning Protection, Cambridge University Press, 2008.
    doi:10.1017/CBO9780511585890

    8. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symposium on Electromagnetic Compatibility EMC Europe, York, UK, 2011.

    9. Nogueira de Sao Jose, A., A. Colin, J. Fujioka Mologni, G. Maciulis Dip, U. do Carmo Resende, and S. TrindadeMordente Goncalves, "Computational savings based on three-dimensional automotive geometries’ simplifications in electromagnetics simulations," International Conference on Microwave and Optoelectronics, Rio de Janeiro, 2013.

    10. Smith, S. M. and C. Furse, "Stochastic FDTD for analysis of statistical variation in electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 60, 3343-3350, July 2012.
    doi:10.1109/TAP.2012.2196962

    11. Pyrialakos, G., T. Zygiridis, N. Kantartzis, and T. Tsiboukis, "FDTD analysis of 3D lightning FDTD analysis of 3D lightning," Proc. Int. Symp. Electromagnetic Compatibility, 577-582, Sept. 2014.

    12., "A400M,", http://militaryaircraft-airbusds.com/aircraft/a400m/a400mabout.aspx.

    13., "SEMBA by UGR (2013),", http://www.sembahome.org/.

    14. EUROCAE ED-84, Septembre 1997/SAE ARP 5412, rev A, February 2005, Aircraft Lightning Environment and Related Test Waveforms Standard.

    15. I. Standard P1557, Standard for Validation of Computational Electromagnetics Computer Modelling and Simulation, Part 1, 2, 2008.

    16. Duffy, A., A. Martin, A. Orlandi, G. Antonini, T. Benson, and M. Woolfson, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part I --- The FSV method," IEEE Transactions on Electromagnetics Compatibility, Vol. 48, No. 3, 449-459, August 2006.
    doi:10.1109/TEMC.2006.879358

    17. Orlandi, A., A. Duffy, B. Archambeault, G. Antonini, D. Coleby, and S. Connor, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Transactions on Electromagnetics Compatibility, Vol. 48, No. 3, 460-467, August 2006.
    doi:10.1109/TEMC.2006.879360

    18. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 2, 88-97, 1981.
    doi:10.1109/TEMC.1981.303899

    19. RTCA/DO-160, issue G, December 2010/EUROCAE ED-14, issue G, May 2011, Environmental Conditions and Test Procedures for Airborne Equipment.

    20. Serway, R. A., J.W. Jewett, and Jr., Principles of Physics, Brooks/Cole, 2013.

    21. Mur, G., "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 377-382, November 1981.

    22. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.

    23., "CATIA by Dassault Systemes,", http://www.3ds.com.

    24., "CADfix,", http://www.transcendata.com/products/cadfix/.

    25. Garcia, S. G., J. Alvarez, L. D. Angulo, and M. R. Cabello, "UGRFDTD EM solver,", http://www.sembahome.org/.

    26. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    27. Berenger, J.-P., "A multiwire formalism for the fdtd method," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.
    doi:10.1109/15.865332

    28., "HIRF-SE project (2008),", http://hirfse.axessim.eu/.
    doi:10.1109/15.865332

    29., "Alhambra-UGRFDTD by CSIRC (2013),", https://alhambra.ugr.es/.
    doi:10.1109/15.865332

    30. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC Europe, 2012.

    31. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Garcia, "HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.
    doi:10.1109/TEMC.2013.2291680

    32. Gutierrez, G. G., D. M. Romero, M. R. Cabello, E. Pascual-Gil, L. D. Angulo, and S. G. Garcia, "On the design of aircraft electrical structure networks," IEEE Transactions on Electromagnetic Compatibility, Vol. 2, No. 58, 401-408, 2016.
    doi:10.1109/TEMC.2016.2514379

    33. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.
    doi:10.2528/PIERL12030206

    34. Cabello, M. R., L. D. Angulo, J. Alvarez, I. Flintoft, S. Bourke, J. Dawson, R. G. Martin, and S. G. Garcia, "A hybrid crank-nicolson fdtd subgridding boundary condition for lossy thin-layer modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 1397-1406, 2017.
    doi:10.1109/TMTT.2016.2637348

    35. Schmidt, S. and G. Lazzi, "Use of the FDTD thin-strut formalism for biomedical telemetry coil designs," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1952-1956, 2004.
    doi:10.1109/TMTT.2004.832019