Vol. 83
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-08
Surface Plasmon Effects and Resonance State on Square Lattice of Metallic Photonic Crystals and Defect Mode in h Polarization
By
Progress In Electromagnetics Research C, Vol. 83, 45-56, 2018
Abstract
The surface plasmon effect in metallic photonic crystals has been investigated. Band structure graph is the only graph that can be used to explain the characteristics of photonic crystals. In this work, band structure graphs have been used to describe these characteristics, which include the surface plasmon effect of photonic crystals. Recently, band structure graphs for frequency-dependent materials have been analyzed by several researchers. The surface plasmon effect has been found for these materials. This article reports the effect of surface plasmons which cause resonance state in the metallic photonic crystals when the relative permittivity is changed from band structure graphs. The numerical results from the commercial software show the magnetic field distribution of waves on the normal photonic crystals, and defect mode is added for each frequency.
Citation
Khee Lam Low, Mohd Zubir Mat Jafri, Sohail A. Khan, and Donald G. S. Chuah, "Surface Plasmon Effects and Resonance State on Square Lattice of Metallic Photonic Crystals and Defect Mode in h Polarization," Progress In Electromagnetics Research C, Vol. 83, 45-56, 2018.
doi:10.2528/PIERC18011601
References

1. Yablonovitch, E., "Photonic band-gap structures," J. Opt. Soc. Am. B, Vol. 10, No. 2, 13, 1993.
doi:10.1364/JOSAB.10.000283

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 4, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Amir Hosseini, H. N. and Yehia Massouda, "Triangular lattice plasmonic photonic band gaps in subwavelength metal-insulator-metal waveguide structures," Appl. Phys. Lett., Vol. 92, 3, 2008.

4. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, 7, 2007.

5. Crist, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Plasmon polaritons in a metallic photonic crystal slab," Phys. Status Solidi, Vol. 5774, No. 5, 1393-1396, 2010.

6. El-Kady, I., M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 4, 2000.
doi:10.1103/PhysRevB.62.15299

7. Ghoshal, A. and P. G. Kik, "Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays," J. Appl. Phys., Vol. 103, 8, 2008.

8. Ito, T. and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B, Vol. 64, 8, 2001.

9. Keskinen, M. J., P. Loschialpo, D. Forester, and J. Schelleng, "Photonic band gap structure and transmissivity of frequency-dependent metallic-dielectric systems," transmissivity of frequency-dependent metallic-dielectric systems, Vol. 88, No. 10, 6, 2000.

10. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, No. 12, 18, 1997.
doi:10.1103/PhysRevB.55.7427

11. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phys. Rev. B, Vol. 58, No. 11, 22, 1998.
doi:10.1103/PhysRevB.58.7230

12. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, No. 23, 10, 1994.
doi:10.1103/PhysRevB.50.16835

13. Luo, C., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Negative refraction without negative index in metallic photonic crystals," Opt. Express, Vol. 11, No. 7, 9, 2003.
doi:10.1364/OE.11.000746

14. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, 10, 2002.

15. O’Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Physics Condens. Matter, Vol. 14, No. 15, 11, 2002.

16. Ortuno, R., C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, "Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays," Phys. Rev. B, Vol. 79, 10, 2009.

17. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations," Phys. Rev. Lett., Vol. 69, No. 19, 4, 1992.
doi:10.1103/PhysRevLett.69.2772

18. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, 4, 2006.

19. Sakoda, K., N. Kawai, and T. Ito, "Photonic bands of metallic systems. I. Principle of calculation and accuracy," Phys. Rev. B, Vol. 64, 8, 2001.

20. Ustyantsev, M. A., L. F. Marsal, J. Ferre-Borrull, and J. Pallares, "Effect of the dielectric background on dispersion characteristics of metallo-dielectric photonic crystals," Opt. Commnuications, Vol. 260, 5, 2006.

21. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dieletric photonic crystals," Appl. Phys. Lett., Vol. 86, 3, 2005.
doi:10.1063/1.1922080

22. Zeid, A. and H. Baudrand, "Electromagnetic scattering by metallic holes and its applications in microwave circuit design," microwave circuit design, Vol. 50, No. 4, 1198-1206, 2002.

23. Zhao, Y. and D. R. Grischkowsky, "2-D terahertz metallic photonic crystals in parallel-plate waveguides," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 8, 2007.
doi:10.1109/TMTT.2007.892798

24. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 13, 2010.

25. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap calculation on 2D square lattice metallic slab photonic crystals with air rods," 3rd International Meeting on Frontiers of Physics 2009, Kuala Lumpur, Malaysia, 2009.

26. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Band gap study using plane wave expansion method for metallic slab with air rods in E polarizing mode," Chinese J. Phys., Vol. 47, No. 6, 10, 2009.

27. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Dielectric slab photonic crystals containing metallic components for E polarization mode," Appl. Phys. Rev., Vol. 2, No. 2, 2010.

28. Nenninger, G. G., P. Tobiska, J. Homola, and S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors Actuators B Chem., Vol. 74, No. 1-3, 145-151, Apr. 2001.
doi:10.1016/S0925-4005(00)00724-3

29. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuators B Chem., Vol. 54, No. 1-2, 3-15, Jan. 1999.

30. Tiwari, K., S. C. Sharma, and N. Hozhabri, "High performance surface plasmon sensors: Simulations and measurements," J. Appl. Phys., Vol. 118, No. 9, 93105, Sep. 2015.

31. Homola, J. and Ed., Surface Plasmon Resonance Based Sensors, Vol. 4, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

32. Laude, V., Y. Achaoui, S. Benchabane, and A. Khelif, "Plane wave expansion method for phononic crystals: Review and prospects,", 2009.

33. Ferre-Borrull, J., E. Xifre-Perez, M. Lluis, F. Marsal, and J. Pallares, "Real metals in metallo-dielectric photonic crystals in the visible," 2007 Spanish Conference on Electron Devices, 4, 2007.

34. Reinhard, B., G. Torosyan, and R. Beigang, "Band structure of terahertz metallic photonic crystals with high metal filling factor," Appl. Phys. Lett., Vol. 92, No. 20, 2059, 2008.

35. Zhang, J., L. Cai, W. Bai, and G. Song, "Flat surface plasmon polariton bands in Bragg grating waveguide for slow light," J. Light. Technol., Vol. 28, No. 14, 2030-2036, Jul. 2010.

36. Gadot, F., A. de Lustrac, J.-M. Lourtioz, T. Brillat, A. Ammouche, and E. Akmansoy, "High-transmission defect modes in two-dimensional metallic photonic crystals," J. Appl. Phys., Vol. 85, No. 12, 8499-8501, May 1999.

37. Low, K. L., M. Z. M. Jafri, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, No. 1, 67-79, 2010.

38. Low, K. L., M. Z. Mat Jafri, and S. A. Khan, "An investigation of surface plasmon effects on metallic photonic crystals in H polarization," The 8th International Conference on Metamaterials, Photonic Crystals and Plasmonics, 2017.

39. Kittel, C., Introduction to Solid State Physics, Wiley, 2005.

40. Sakoda, K., Optical Properties of Photonic Crystals, 2005.

41. Qiu, M. and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Phys. Rev. B, Vol. 61, No. 19, 6, 2000.