Vol. 83
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-23
Accurate Design of Deep Sub-Wavelength Metamaterials for Wireless Power Transfer Enhancement
By
Progress In Electromagnetics Research C, Vol. 83, 195-203, 2018
Abstract
Deep sub-wavelength metamaterials for a wireless power transfer system (WPT) is still a challenge in design and optimization. We propose a large capacitor spiral metamaterial (LCSM) which involves inherent advantages of low operating frequencies and compact structures. The ratio of electromagnetic wavelength to the metamaterial scale can easily reach 1000 at the operation frequency of several megahertz. A hybrid search method, which combines a modified simulated annealing algorithm and a differential evolution algorithm, is applied to the accurate and automatic design of LCSM. The permeability of LCSM is evaluated by finite element analysis and then verified by experimental results. Finally, a small-size WPT system working at 6.78 MHz was constructed to evaluate LCSM. The results show that LCSM can enhance the transfer efficiency of the WPT system from 5.54% to 22.40% at a transmission distance of 15 cm.
Citation
Chunyu Zhao, Senlin Zhu, Hui Zhu, Zhenyu Huang, and Xudong Luo, "Accurate Design of Deep Sub-Wavelength Metamaterials for Wireless Power Transfer Enhancement," Progress In Electromagnetics Research C, Vol. 83, 195-203, 2018.
doi:10.2528/PIERC18012501
References

1. Tesla, N., "The transmission of electrical energy without wires as a means for furthering peace," Electrical World & Engineer, 1905.

2. Kalwar, K. A., M. Aamir, and S. Mekhilef, "Inductively coupled power transfer (ICPT) for electric vehicle charging --- A review," Renewable & Sustainable Energy Reviews, Vol. 47, 462-475, 2015.
doi:10.1016/j.rser.2015.03.040

3. Barman, S. D., A. W. Reza, N. Kumar, M. E. Karim, and A. B. Munir, "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable & Sustainable Energy Reviews, Vol. 51, 1525-1552, 2015.
doi:10.1016/j.rser.2015.07.031

4. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83, 2007.
doi:10.1126/science.1143254

5. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," IEEE International Conference on Wireless Information Technology and Systems, 1-4, 2010.

6. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Physical Review B, Vol. 83, No. 20, 99-105, 2011.
doi:10.1103/PhysRevB.83.205114

7. Choi, J. and C. H. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress in Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

8. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Experiments on wireless power transfer with metamaterials," Applied Physics Letters, Vol. 98, No. 25, 254101, 2011.
doi:10.1063/1.3601927

9. Ranaweera, A. L. A. K., T. P. Duong, and J. W. Lee, "Experimental investigation of compact metamaterial for high efficiency mid-range wireless power transfer applications," Journal of Applied Physics, Vol. 116, No. 4, 83-86, 2014.
doi:10.1063/1.4891715

10. Rodrıguez, E. S. G., A. K. Ramrakhyani, D. Schurig, and G. Lazzi, "Compact low-frequency metamaterial design for wireless power transfer efficiency enhancement," IEEE Transactions on Microwave Theory & Techniques, Vol. 64, No. 5, 1644-1654, 2016.
doi:10.1109/TMTT.2016.2549526

11. Engineers, E. E. and I. S. Board, "Ieee standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz," IEEE Std. C., 1, 2002.

12. Chen, W. C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely sub-wavelength planar magnetic metamaterials," Physical Review B, Vol. 85, No. 20, 1614-1621, 2012.

13. Zhou, S., W. Li, G. Sun, and Q. Li, "A level-set procedure for the design of electromagnetic metamaterials," Optics Express, Vol. 18, No. 7, 6693, 2010.
doi:10.1364/OE.18.006693

14. Chen, P. Y., C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, "Synthesis design of artificial magnetic metamaterials using a genetic algorithm," Optics Express, Vol. 16, No. 17, 12806, 2008.
doi:10.1364/OE.16.012806

15. Zhu, H., X. Luo, C. Zhao, Z. Hong, and Z. Huang, "Design and optimization of deep sub-wavelength metamaterials using a hybrid search algorithm," Wireless Power Transfer Conference, 2017.

16. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.
doi:10.1023/A:1008202821328

17. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Readings in Computer Vision, Vol. 220, No. 4598, 606-615, 1983.

18. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength metaatoms," EPL, Vol. 109, No. 6, 2015.
doi:10.1209/0295-5075/109/68005

19. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E Statistical Nonlinear & Soft Matter Physics, Vol. 71, No. 3, Pt. 2B, 036617, 2005.