Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-09
Miniaturized Multiband Microstrip Patch Antenna Using Metamaterial Loading for Wireless Application
By
Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018
Abstract
A highly miniaturized significant gain triple band patch antenna loaded with a new modified double circular slot ring resonator (MDCsRR) metamaterial unit cell is presented in this paper. Novel MDCsRR is a compact low frequency slot ring resonator. The principle of the proposed patch antenna element is based on adding series capacitance to decrease the half wavelength resonance frequency, thus reducing the electrical size of the proposed patch antenna. The transmission line model is used to analyze passband and stopband characteristics of the radiating bands. Circulating current distribution around MDCsRR slot with increased interdigital capacitor finger length causes multiple modes to propagate. The MDCsRR metamaterial unit cell consists of a new modified circular slot ring resonator (MCsRR) with metallic strip finger. The proposed structure is compact in size with radiating element dimensions of 0.20λ × 0.20λ × 0.008λ at first resonating frequency. The proposed antenna offers triple band operation with significant calculated antenna gain of 3.28 dBi at first center frequency of 3.2 GHz, 2.76 dBi at second center frequency of 5.4 GHz and 3.1 dBi at third center frequency of 5.8 GHz. The electrical size of the proposed antenna is miniaturized by about 68.83% as compared to the conventional patch antenna operating at first resonating frequency.
Citation
Amit Kumar Singh Mahesh Pandurang Abegaonkar Shiban Kishen Koul , "Miniaturized Multiband Microstrip Patch Antenna Using Metamaterial Loading for Wireless Application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905
http://www.jpier.org/PIERC/pier.php?paper=18012905
References

1. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-39, Oct. 2008.
doi:10.1109/MAP.2008.4674709

2. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, May 2012.
doi:10.1109/TAP.2012.2189699

3. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 772-785, Feb. 2012.
doi:10.1109/TAP.2011.2173120

4. Lee, Y., S. Tse, Y. Hao, and C. G. Parini, "A compact microstrip antenna with improved bandwidth using Complementary Split-Ring Resonator (CSRR) loading," 2007 IEEE Antennas and Propagation Society International Symposium, 5431-5434, Honolulu, HI, 2007.

5. Xie, Y., L. Li, C. Zhu, and C.-H. Liang, "A novel dual-band patch antenna with complementary split ring resonators embedded in the ground plane," Progress In Electromagnetics Research Letters, Vol. 25, 117-126, 2011.
doi:10.2528/PIERL11062802

6. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, Feb. 2012.
doi:10.1109/TAP.2011.2173114

7. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 258-261, 2009.
doi:10.1109/LAWP.2009.2014402

8. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

9. Ziolkowski, R. W., P. Jin, and C. C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, Oct. 2011.
doi:10.1109/JPROC.2010.2091610

10. Zhu, J. and G. V. Eleftheriades, "Dual-band metamaterial-inspired small monopole antenna for WiFi applications," Electronics Letters, Vol. 45, No. 22, 1104-1106, Oct. 22, 2009.
doi:10.1049/el.2009.2107

11. Antoniades, M. A. and G. V. Eleftheriades, "Multiband compact printed dipole antennas using NRI-TL metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5613-5626, Dec. 2012.
doi:10.1109/TAP.2012.2211324

12. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.

13. Gautam, A. K., L. Kumar, B. K. Kanaujia, and K. Rambabu, "Design of compact F-shaped slot triple-band antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1101-1105, Mar. 2016.
doi:10.1109/TAP.2015.2513099

14. Brocker, D. E., Z. H. Jiang, M. D. Gregory, and D. H.Werner, "Miniaturized dual-band folded patch antenna with independent band control utilizing an interdigitated slot loading," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 380-384, Jan. 2017.
doi:10.1109/TAP.2016.2627025

15. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Highly miniaturized dual band patch antenna loaded with metamaterial unit cell," Microwave and Optical Technology Letters, Vol. 59, No. 8, 2027-2033, May 2017.
doi:10.1002/mop.30683

16. Kurra, L., M. P. Abegaonkar, and S. K. Koul, "Equivalent circuit model of resonant EBG band stop filter," IETE Journal of Research, Vol. 62, No. 1, 17-26, Jan. 2016.

17. Ali, T. and R. C. Biradar, "A triple band highly miniaturized antenna for WiMAX/WLAN applications ," Microwave and Optical Technology Letters, Vol. 60, 466-471, 2018.
doi:10.1002/mop.30993

18. Boukarkar, A., X. Q. Lin, Y. Jiang, and Y. Q. Yu, "Miniaturized single-feed multiband patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 850-854, Feb. 2017.
doi:10.1109/TAP.2016.2632620

19. Kumar, A., M. P. Abegaonkar, and S. K. Koul, "Triple band miniaturized patch antenna loaded with metamaterial unit cell for defense applications," 2016 11th International Conference on Industrial and Information Systems (ICIIS), 833-837, Roorkee, 2016.

20. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902

21. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 5197-5203, Nov. 2015.
doi:10.1109/TAP.2015.2477521

22. Gupta, A., S. K. Sharma, and R. K. Chaudhary, "A compact dual-mode metamaterial-inspired antenna using rectangular type CSRR," Progress In Electromagnetics Research, Vol. 57, 35-42, 2015.
doi:10.2528/PIERC15032304

23. Sharma, S. K., M. A. Abdalla, and R. K. Chaudhary, "An electrically small SICRR metamaterial-inspired dual-band antenna for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 59, No. 3, 573-578, 2017.
doi:10.1002/mop.30339