Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-12
A Compact Ka-Band TDD Transceiver System Module with Attractive Temperature Characteristic
By
Progress In Electromagnetics Research C, Vol. 83, 113-124, 2018
Abstract
This paper presents a Ka-band TDD transceiver system module for the secondary surveillance radar application with attractive temperature characteristic. Four multifunction chips and a MEMS filter are designed and fabricated in GaAs pseudomorphic high electron mobility transistor (pHEMT) process and MEMS technology in this work, respectively. These multifunction chips and MEMS filter with some other commercial chips are assembled in a compact cavity to form the transceiver system. The temperature characteristics of the designed chips and the whole transceiver module are measured respectively in this work. Benefiting from the designed temperature compensation circuits on the chips, the transceiver is able to work from -55˚C to +75˚C with little performance fluctuation. The noise figure of the receiver is less than 3.7 dB in the 400 MHz working bandwidth. Its dynamic range is more than 59 dB with more than 23.9 dB power gain. The maximum output power of the transmitter is larger than 30.3 dBm. The system only has two input/output ports and one control bus, which is suitable for the large-scale system integration.
Citation
Yin Tian Tao Dang Guang-Ming Wang Jie Yang Wei Tong Zhigang Wang Yuehang Xu Yu Cao Yijun Chen Lei Han Dong Chen Yexi Song , "A Compact Ka-Band TDD Transceiver System Module with Attractive Temperature Characteristic," Progress In Electromagnetics Research C, Vol. 83, 113-124, 2018.
doi:10.2528/PIERC18020606
http://www.jpier.org/PIERC/pier.php?paper=18020606
References

1. Tian, Y., et al., "A Ka-band TDD front-end chip with 24.7% bandwidth and temperature compensation technology," IEICE Electronics Express, Vol. 14, No. 9, 20170350-20170350, 2017.
doi:10.1587/elex.14.20170350

2. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

3. Curtis, J., Z. Hongyu, and F. Aryanfar, "A fully integrated Ka-band front end for 5G transceiver," IEEE International Microwave Symposium (IMS), 1-3, 2016.

4. Li, Q. and Y. P. Zhang, "CMOS T/R switch design: Towards ultra-wideband and higher frequency," IEEE Journal of Solid-State Circuits, Vol. 42, No. 3, 563-570, 2007.
doi:10.1109/JSSC.2006.891442

5. Shirakawa, K., Y. Kawasaki, Y. Ohashi, and N. Okubo, "A 15/60 GHz one-stage MMIC frequency quadrupler," IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, 35-38, 1996.

6. Lin, K. Y., Y. J. Wang, D. C. Niu, and H. Wang, "Millimeter-wave MMIC single-pole-double-throw passive HEMT switches using impedance-transformation networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1076-1085, 2003.
doi:10.1109/TMTT.2003.809676

7. Lin, K. Y., W. H. Tu, P. Y. Chen, and H. Y. Chang, "Millimeter-wave MMIC passive HEMT switches using traveling-wave concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1798-1808, 2004.
doi:10.1109/TMTT.2004.831574

8. Chou, H. T., Z. L. Ke, and H. K. Chiou, "A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology," Asia Pacific Microwave Conference Proceedings, 750-752, 2012.

9. Gong, K., W. Hong, Y. Zhang, P. Chen, and C. J. You, "Substrate integrated waveguide quasi-elliptic filters with controllable electric and magnetic mixed coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 3071-3078, 2012.
doi:10.1109/TMTT.2012.2209437

10. Djerafi, T., K. Wu, and D. Deslandes, "A temperature-compensation technique for substrate integrated waveguide cavities and filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2448-2455, 2012.
doi:10.1109/TMTT.2012.2201741

11. Farhan Shafique, M. and I. D. Robertson, "Laser machining of microvias and trenches for substrate integrated waveguides in LTCC technology," European Microwave Conference, 272-275, 2009.

12. Schuster, C., G. Leonhardt, and W. Fichtner, "Electromagnetic simulation of bonding wires and comparison with wide band measurements," IEEE Transactions on Advanced Packaging, Vol. 23, No. 1, 69-79, 2000.
doi:10.1109/6040.826764

13. Lim, J. H., D. H. Kwon, J. S. Rieh, S. W. Kim, and S. W. Hwang, "RF characterization and modeling of various wire bond transitions," IEEE Transactions on Advanced Packaging, Vol. 28, No. 4, 772-778, 2005.
doi:10.1109/TADVP.2005.853554

14. Mouthaan, K., R. Tinti, M. D. Kok, H. C. D. Graaff, J. L. Tauritz, and J. Slotboom, "Microwave modelling and measurement of the self- and mutual inductance of coupled bondwires," Bipolar/BiCMOS Circuits and Technology Meeting, 166-169, 1997.

15. Mertens, K. L. R. and M. S. J. Steyaert, "A 700-MHz 1-W fully differential CMOS class-E power amplifier," IEEE Journal of Solid-State Circuits, Vol. 37, No. 2, 137-141, 2002.
doi:10.1109/4.982419