Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-24
Experimental Investigation of Space and Polarization Characteristics of a Subway-Like Tunnel Channel
By
Progress In Electromagnetics Research C, Vol. 83, 205-216, 2018
Abstract
This article studies the spatial domain and polarization domain characteristics of multipath channels in a subway-like tunnel environment. Experiments were performed by rotating a horn antenna with 30 half power beamwidth (HPBW) in the azimuthal direction for two different transmitter-receiver (Tx-Rx) distances. The time domain measurement is conducted when carrier frequency is set as 1.8 GHz. The cross-polarization discrimination (XPD) is studied, and it is found that the maximum depolarized signals are from sidewalls. The characteristics of power azimuth spectrum (PAS) of co-polarized and cross-polarized signals follow a multi-cluster Gaussian distribution. Ray-tracing method is employed to investigate the wave propagation in the tunnel environment. The results demonstrate that the main multipath components (MPCs) are around the line-of-sight (LOS) direction, and the reflected waves are from the other end of the tunnel (RWET). The correlation coefficient of co-polarized configuration pursues an increasing function with respect to the Tx-Rx distance and a decreasing function with respect to the cross-polarized configuration.
Citation
Xiaoyu Yin Guoxin Zheng , "Experimental Investigation of Space and Polarization Characteristics of a Subway-Like Tunnel Channel," Progress In Electromagnetics Research C, Vol. 83, 205-216, 2018.
doi:10.2528/PIERC18020607
http://www.jpier.org/PIERC/pier.php?paper=18020607
References

1. Wang, H., F. R. Yu, and H. Jiang, "Modeling of radio channels with leaky coaxial cable for LTE-M based CBTC systems," IEEE Communications Letters, Vol. 20, No. 5, 1038-1041, 2016.
doi:10.1109/LCOMM.2016.2536599

2. Hrovat, A., G. Kandus, and T. Javornik, "A survey of radio propagation modeling for tunnels," IEEE Communications Surveys & Tutorials, Vol. 16, No. 2, 658-669, 2014.
doi:10.1109/SURV.2013.091213.00175

3. Forooshani, A. E., S. Bashir, D. G. Michelson, and S. Noghanian, "A survey of wireless communications and propagation modeling in underground mines," IEEE Communications Surveys & Tutorials, Vol. 15, No. 4, 1524-1545, 2013.
doi:10.1109/SURV.2013.031413.00130

4. Lienard, M., P. Degauque, J. Baudet, and D. Degardin, "Investigation on MIMO channels in subway tunnels," IEEE Journal on Selected Areas in Communications, Vol. 21, No. 3, 332-339, 2003.
doi:10.1109/JSAC.2003.809627

5. Forooshani, A. E., R. D. White, and D. G. Michelson, "Effect of antenna array properties on multiple-input-multiple-output system performance in an underground mine," IET Microwaves, Antennas & Propagation, Vol. 7, No. 13, 1035-1044, 2013.
doi:10.1049/iet-map.2013.0102

6. Forooshani, A. E., C. Y. T. Lee, and D. G. Michelson, "Effect of antenna configuration on MIMO-based access points in a short tunnel with infrastructure," IEEE Transactions on Communications, Vol. 64, No. 5, 1942-1951, 2016.
doi:10.1109/TCOMM.2016.2538769

7. Valdesueiro, J. A., B. Izquierdo, and J. Romeu, "On 2 × 2 MIMO observable capacity in subway tunnels at C-band an experimental approach," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1099-1102, 2010.
doi:10.1109/LAWP.2010.2095816

8. Molina-Garcia-Pardo, J. M., M. Lienard, P. Degauque, C. Garcia-Pardo, and L. Juan-Llacer, "MIMO channel capacity with polarization diversity in arched tunnels," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1186-1189, 2009.
doi:10.1109/LAWP.2009.2035299

9. Garcia-Pardo, C., J.-M. Molina-Garc´ıa-Pardo, M. Lienard, D. P. Gaillot, and P. Degauque, "Double directional channel measurements in an arched tunnel and interpretation using ray tracing in a rectangular tunnel," Progress In Electromagnetics Research M, Vol. 22, 91-107, 2012.
doi:10.2528/PIERM11070110

10. Forooshani, A. E., S. Noghanian, and D. G. Michelson, "Characterization of angular spread in underground tunnels based on the multimode waveguide model," IEEE Transactions on Communications, Vol. 62, No. 11, 4126-4133, 2014.
doi:10.1109/TCOMM.2014.2363126

11. Sun, R., D. W. Matolak, C. Tao, L. Liu, Z. Tan, and T. Zhou, "Investigation of MIMO channel characteristics in a two-section tunnel at 1.4725 GHz," International Journal of Antennas and Propagation, Vol. 2017, 1-12, 2017.

12. L. Gurrieri, E., T. J. Willink, A. Petosa, and S. Noghanian, "Characterization of the angle, delay and polarization of multipath signals for indoor environments," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2710-2719, 2008.
doi:10.1109/TAP.2008.927507

13. Truffer, P. and P. E. Leuthold, "Wide-band channel sounding at 24 GHz based on a novel fiber-optic synchronization concept," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 4, 692-700, 2001.
doi:10.1109/22.915444

14. MacCartney, G., T. Rappaport, M. Samimi, and S. Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design," IEEE Transactions on Communications, Vol. 63, No. 9, 3029-3056, 2015.
doi:10.1109/TCOMM.2015.2434384

15. Nie, X., J. Zhang, and P. Zhang, "Polarization and spatial statistics of wideband MIMO relay channels in urban environment at 2.35 GHz," IEICE Transactions on Communications, Vol. 94-B, No. 1, 139-149, 2011.
doi:10.1587/transcom.E94.B.139

16. Zhang, Y. P., Y. Hwang, and R. G. Kouyoumjian, "Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. 2. Analysis and measurements," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 9, 1337-1345, 1998.
doi:10.1109/8.719977

17. Schumacher, L., K. I. Pedersen, and P. E. Mogensen, "From antenna spacings to theoretical capacities --- guidelines for simulating MIMO systems," The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, No. 2, 587-592, 2002.
doi:10.1109/PIMRC.2002.1047289

18., , http://www.zttcable.com.