Vol. 83
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-10
An Efficient Algorithm for the Analysis and Design of Carbon Nanotube Photonic Crystals
By
Progress In Electromagnetics Research C, Vol. 83, 83-96, 2018
Abstract
In this part, we develop an efficient algorithm for the computation of the complete transmitted and reflected electromagnetic fields in generic 2D arrays of carbon nanotubes (CNTs). The method relies on first approaching individual CNTs using an effective-boundary condition based on a proper quantum conductivity model. An exact eigenmode solution is obtained for this problem for both single-wall and multi-wall CNTs, which then is integrated with Floquet mode theory to handle periodic arrays of CNTs. The algorithm's convergence rate is accelerated using special methods and then applied to the analysis and design of various multi-layered CNT-based photonic crystals. It is shown that the proposed method can clearly demarcate the intrinsic resonances due to electronic transitions in individual CNTS and new sets of geometric resonances produced by the array environment. The algorithm can be used to analyze measured optical spectra of CNT composites and to design new optical bandgap devices.
Citation
Said Mikki Ahmed A. Kishk , "An Efficient Algorithm for the Analysis and Design of Carbon Nanotube Photonic Crystals," Progress In Electromagnetics Research C, Vol. 83, 83-96, 2018.
doi:10.2528/PIERC18021001
http://www.jpier.org/PIERC/pier.php?paper=18021001
References

1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0

2. Meyyappan, M., Carbon Nanoyubes: Sceince and Applications, CRC Press, 2005.

3. Poole, C. P. and F. J. Owens, Introduction to Nanotechnology, Wiley-Interscience, 2003.

4. Smalley, R. E., M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, 2001.

5. Kempa, K., et al., "Photonic crystals based on periodic arrays of aligned carbon nanotubes," Nano Letters, Vol. 3, No. 1, 13-18, 2003.
doi:10.1021/nl0258271

6. Lidorikis, E. and A. C. Ferrari, "Photonics with multiwall carbon nanotube arrays," ACS Nano, Vol. 3, No. 5, 1238-1248, 2009.
doi:10.1021/nn900123a

7. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Negative index photonic crystal lenses based on carbon nanotube arrays," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 10, No. 4, 499-505, October 2012.
doi:10.1016/j.photonics.2012.04.003

8. Slepyan, G. Y., et al., "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol. 57, No. 16, 9485-9497, April 1998.
doi:10.1103/PhysRevB.57.9485

9. Slepyan, G. Y., et al., "Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, No. 24, 17136-17149, December 1999.
doi:10.1103/PhysRevB.60.17136

10. Slepyan, G. Ya., M. V. Shuba, and S. A. Maksimenko, "Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas," Phys. Rev. B, Vol. 73, 195416-19526, May 2006.
doi:10.1103/PhysRevB.73.195416

11. Mikki, S. M. and A. Kishk, "Theory of optical scattering by carbon nanotubes," Microwave & Optical Technology Letters, Vol. 49, No. 10, 2360-2364, October 2007.
doi:10.1002/mop.22768

12. Mikki, S. M. and A. A. Kishk, "Derivation of the dielectric tensor of carbon nanotubes using lattice dynamics formalism," Progress In Electromagnetics Research B, Vol. 9, 1-26, 2008.
doi:10.2528/PIERB08082301

13. Mikki, S. and A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotube using effective-boundary condition approach," IEEE Antennas & Propagation/URSI International Symposium, 2008.

14. Mikki, S. M. and A. A. Kishk, "Electromagnetic scattering by multi-wall carbon nanotubes using effective-boundary condition approach: Theory and applications," Progress In Electromagnetics Research B, Vol. 17, 49-67, 2009.
doi:10.2528/PIERB09040605

15. Mikki, S.M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, Vol. 86, 111-134, 2008.
doi:10.2528/PIER08081704

16. Mikki, S. M. and A. A. Kishk, "Various homogenization formalisms for carbon nanotube composites," International URSI Meeting, Ottawa, July 21-26, 2007.

17. Mikki, S. M. and A. Kishk, "Mean-field electrodynamic theory of aligned carbon nanotube composites," IEEE Trans. Antennas Progat., Vol. 57, No. 5, 1412-1419, May 2009.
doi:10.1109/TAP.2009.2016687

18. Chew, W. C., Waves and Fields in Inhomogeneous Media, re-print Ed., IEEE Press, 1999.
doi:10.1109/9780470547052

19. Kushta, K. and K. Yausumoto, "Electromagnetic scattering from periodic arrays of two circular cylinders per unit cell," Progress In Electromagnetics Research, Vol. 29, 69-85, 2000.
doi:10.2528/PIER99103101

20. Yausumoto, K. and K. Yoshitomi, "Efficient calculation of lattice sums for free-space periodic Green’s functions," IEEE Trans. Antennas & Propagation, Vol. 47, 1050-1055, June 1999.
doi:10.1109/8.777130

21. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.

22. Collins, P. G., "Defects and disorder in carbon nanotubes," Oxford Handbook of Nanoscience and Technology: Frontiers and Advances, A. V. Narlikar, & Y. Y. Fu, (Eds.), Oxford Univ. Press, Oxford, 2009.

23. Nho, H. W., Y. Kalegowda, H.-J. Shin, and T. H. Yoon, "Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy," Scientific Reports, Vol. 6, 24488, 2016.
doi:10.1038/srep24488

24. Liew, S. F., S. Knitter, W. Xiong, and H. Cao, "Photonic crystals with topological defects," Phys. Rev. A, Vol. 91, 023811, February 6, 2015.