Vol. 83
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-12
Algebraic Algorithm for Mixed Near-Field and Far-Field Sources Classification and Localization
By
Progress In Electromagnetics Research C, Vol. 83, 125-136, 2018
Abstract
Using uniform linear array (ULA), a passive localization algorithm is presented for mixed far-field (FF) and near-field (NF) signals scenarios. Based on the high-order cumulant (HOC) technique, a special Hermite matrix is constructed by three fourth-order cumulant matrices, which are calculated by dividing the ULA into two sub-arrays. Then, the special matrix of signals is decomposed to obtain the source subspace. According to ESPRIT algorithm, two transformation matrices of all sub-arrays can be obtained. Meanwhile, the two transformation matrixes could be used to calculate the range and angles of arrival (AOA) of NF sources, as well as AOAs of FF sources. Moreover, compared with twostage MUSIC (TSMUSIC) and four-order cumulant MUSIC method, the proposed algorithm has higher accuracy for localisation of both FF and NF sources without any spectral search.
Citation
Kai Wang Ling Wang Zhaolin Zhang Jian Xie , "Algebraic Algorithm for Mixed Near-Field and Far-Field Sources Classification and Localization," Progress In Electromagnetics Research C, Vol. 83, 125-136, 2018.
doi:10.2528/PIERC18022705
http://www.jpier.org/PIERC/pier.php?paper=18022705
References

1. Li, S., W. Liu, D. Zheng, S. Hu, and W. He, "Localization of near-field sources based on sparse signal reconstruction with regularization parameter selection," International Journal of Antennas and Propagation, Vol. 2017, Article ID 1260601, 7 pages, 2017.

2. Qin, S., Y. D. Zhang, Q. Wu, and M. G. Amin, "Structure-aware Bayesian compressive sensing for near-field source localization based on sensor-angle distributions," International Journal of Antennas and Propagation, Vol. 2015, Article ID 783467, 15 pages, 2015.

3. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

4. Weiss, A. J. and B. Friedlander, "Range and bearing estimation using polynomial rooting," IEEE J. Ocean. Eng., Vol. 18, No. 2, 130-137, Apr. 1993.
doi:10.1109/48.219532

5. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, 984-995, Jul. 1989.

6. Xie, J., H. Tao, X. Rao, and J. Su, "Localization of mixed far-field and near-field sources under unknown mutual coupling," IEEE Trans. Digital Signal Processing, Vol. 50, No. 3, 229-239, 2016.
doi:10.1016/j.dsp.2015.10.012

7. Xie, J., H. Tao, X. Rao, and J. Su, "Passive localization of mixed far-field and near-field sources without estimating the number of sources," IEEE Trans. Sensors, Vol. 15, No. 2, 3834-3853, 2015.

8. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm," IEEE Trans. Signal Processing, Vol. 58, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

9. Grosicki, E., K. Abed-Meraim, and Y. Hua, "A weighed linear prediction method for near-field source localization," IEEE Trans. Signal Processing, Vol. 53, 3651-3660, Oct. 2005.

10. Liu, G. and X. Sun, "Two-stage matrix differencing algorithm for mixed far-field and near-field sources classification and localization," Sens. J., Vol. 14, 1957-1965, 2014.

11. Wu, Y. T., H. Wang, Y. B. Zhang, and Y. Wang, "Multiple near-field source localisation with uniform circular array," IEEE Electron. Lett., Vol. 49, No. 24, 1509-1510, 2013.
doi:10.1049/el.2013.2012

12. Xue, B., G. Y. Fang, and Y. C. Ji, "Passive localisation of mixed far-field and near-field sources using uniform circular array," IEEE Electron. Lett., Vol. 52, No. 20, 1690-1692, 2016.
doi:10.1049/el.2016.2091

13. Xie, J., H. H. Tao, X. Rao, and J. Su, "Localization of mixed far-field and near-field sources under unknown mutual coupling," IEEE Trans. Digital Signal Processing, Vol. 50, No. 3, 229-239, 2016.
doi:10.1016/j.dsp.2015.10.012

14. Yuen, N. and B. Friedlander, "Performance analysis of higher order ESPRIT for localization of near-field sources," IEEE Trans. Signal Processing, Vol. 46, 709-719, Aug. 1998.
doi:10.1109/78.661337

15. Challa, R. N. and S. Shamsunder, "High-order subspace based algorithms for passive localization of near-field sources," Proc. 29th Asilomar Conf. Signals, Syst. Comput., Vol. 2, 777-781, Oct. 1995.

16. Zhang, Y. D., Q. Siam, and M. G. Amin, "Near-field source localization based on sparse reconstruction of sensor-angle distributions," IEEE International Conference on Radar Conference, 891-895, May 2015.

17. Dogan, M. C. and J. M. Mendel, "Applications of cumulants to array processing --- Part I: Aperture extension and array calibration," IEEE Trans. Signal Processing, Vol. 43, 1200-1216, May 1995.
doi:10.1109/78.382404

18. Porat, B. and B. Friedlander, "Direction finding algorithms based on high-order statistics," IEEE Trans. Signal Processing, Vol. 39, 2016-2024, Sep. 1999.

19. Chevalier, P. and A. Ferreol, "On the virtual array concept for the fourth-order direction finding problem," IEEE Trans. Signal Processing, Vol. 47, 2592-2595, May 1999.
doi:10.1109/78.782217

20. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. ASSP, Vol. 37, 984-995, Jul. 1989.

21. Yildirim, A., A. Gokdogan, and M. Merdan, "Numerical approximations to the solution of ray tracing through the crystalline lens," Chinese Physics Letters, Vol. 29, No. 7, Article Number: 074202, Jul. 2012.

22. Vazquez-Leal, H., U. Filobello-Nino, and A. Yildirim, "Transient and DC approximate expressions for diode circuits," IEICE Electronics Express, Vol. 9, No. 6, 522-530, Mar. 2012.
doi:10.1587/elex.9.522

23. Yuzbasi, S., N. Sahin, and A. Yildirim, "A collocation approach for solving high-order linear Fredholm-Volterra integro-diĀ®erential equations," Mathematical and Computer Modelling, Vol. 55, No. 3-4, 547-563, Feb. 2012.
doi:10.1016/j.mcm.2011.08.032