Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications

By Kingsley Kema Ajekwene, Jelmy Elavathingal Johny, and Thomas Kurian
Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018


Improvement of properties of polymeric materials through blending is a way to obtain products with highly adapted performance for specific applications. The present work reports the design and preparation of binary blend films of poly (ethylene-co-methacrylic acid) neutralized using sodium salt (EMAANa) and nano polyaniline doped with hydrochloric acid (nano PANI-HCl) or toluene sulfonic acid (nano PANI-TSA) with the aim of achieving improved thermal stability, DC conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of EMAANa. The binary blends were prepared by solution blending using a solvent mixture of toluene/1-butanol (90:10) at 65 °C. The hybrid materials were characterized and evaluated by FTIR, UV-Vis spectroscopy, XRD spectroscopy and thermogravimetric analysis (TGA). The electrical conductivity of the PANI and PANI/EMAANa blends was measured by four-probe method. The EMI shielding effectiveness was studied using a wave-guide coupled to an Agilent Synthesized Sweeper 8375A and a Hewlett-Packard spectrum analyzer 7000 in the X band frequency range (8-12 GHz). FTIR indicates a π-π and hydrogen bonding interaction between PANI and EMAANa, enabling the PANI to be adsorbed in the ionomer. The TGA of the blends show similar weight loss pattern with nano PANI-TSA-EMAANa exhibiting slightly lower weight loss below the decomposition temperature. The TGA results show that thermal stability of the blends is better compared to pure EMAANa. The results of measurements of electrical conductivity and EMI SE demonstrates that PANI was successfully blended into the EMAANa substrate.


Kingsley Kema Ajekwene, Jelmy Elavathingal Johny, and Thomas Kurian, "Sodium Salt of Polyethylene-Co-Methacrylic Acid Ionomer/Polyaniline Binary Blends for EMI Shielding Applications," Progress In Electromagnetics Research C, Vol. 88, 207-218, 2018.


    1. Hirasawa, E., Y. Yamamoto, K. Tadano, and S. Yano, "Effect of metal cation type on the structure and properties of ethylene lonomers," J. Appl. Polym. Sci., Vol. 42, 351-362, 1991.

    2. Mathias, L. J., , Learning Center/ionomer, Accessed June 2, 2018, Available: www.pslc.ws/macrog/Polymer Science.

    3. Nandi, A., D. G. Gupta, and A. K. Banthia, "Sulfonated polybutadiene random ionomer as stabilizer for colloidal copper nanoparticles," Colloids Surf. A: Physicochem Eng. Aspects, Vol. 197, 119-124, 2002.

    4. Capek, I., "Nature and properties of ionomer assemblies II," Adv. in Colloid Interface Sci., Vol. 118, 73-112, 2005.

    5. Chodak, I. and I. Krupa, "Percolation effect and mechanical behavior of carbon black filled polyethylene," J. Mat. Sci. Letters, Vol. 18, 1457-1459, 1991.

    6. Castillo-Ortega, M. M., J. C. Encinas, D. E. Rodriguez, and R. Olayo, "Preparation and characterization of electroconductive polypyrrole-thermoplastic composites," J. Appl. Polym. Sci., Vol. 81, No. 6, 1498-1506, 2001.

    7. Carinhana, Jr, D., R. Faez, A. F. Nogueira, and M.-A. De Paoli, "Photoelectrochemical properties of PANI-DBSA/EPDM blends," Synth. Met., Vol. 121, 1569-1570, 2001.

    8. Koul, S., R. Chandra, and S. K. Dhawan, "Conducting polyaniline composite: A reusable sensor material for aqueous ammonia," Sens. Actuat. B, Vol. 75, 151-9, 2001.

    9. Gao, J., J.-M. Sansinena, and H.-L. Wang, "Chemical vapor driven polyaniline sensor/actuators," Synth. Met., Vol. 135-136, 809-810, 2003.

    10. Gerard, M., A. Chaubey, and B. D. Malhotra, "Application of conducting polymers to biosensors," Biosensors & Bioelectronics, Vol. 17, No. 5, 345-349, 2002.

    11. Falcao, E. H. L. and W. M. De Azevedo, "Polyaniline-poly(vinyl alcohol) composite as an optical recording material," Synth. Met., Vol. 128, 149-154, 2002.

    12. Faez, R., I. M. Martin, M.-A. De Paoliand, and M. C. Rezende, "Microwave properties of EPDM/PANI-DBSA blends," Synth. Met., Vol. 119, 435-6, 2001.

    13. Castillo-Ortega, M. M., T. Del Castillo-Castro, J. C. Encinas, M. Perez-Tello, A. De Paoli Marco, and R. Olayo, "Electrically conducting polyaniline-PBMA composite films obtained by extrusion," J. Appl. Polym. Sci., Vol. 89, 179-183, 2003.

    14. Joseph, N., J. Varghese, and M. T. Sebastian, "Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties," RSC Adv., Vol. 5, 20459-20466, 2015.

    15. Gairola, S. P., M. Verma, L. Kumar, M. A. Dar, M. Annapoorni, and R. K. Kotnala, "Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band," Synth. Met., Vol. 160, No. 21-22, 2315-2318, 2010.

    16. Dar, M. A., R. K. Kotnala, V. Verma, J. Shah, W. A. Siddiqui, and M. Alam, "High magneto-crystalline anisotropic core-shell structured MnO.5ZnO.5Fe2O4/polyaniline nanocomposites prepared by in situ emulsion polymerization," J. Phys. Chem. C, Vol. 116, 5277-5287, 2012.

    17. Joseph, N., J. Varghese, and M. T. Sebastian, "A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks," J. Mater. Chem. C, Vol. 4, 999-1008, 2016.

    18. Su, S.-J. and N. Kuramoto, "Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system," Synth. Met., Vol. 108, No. 2, 121-126, 2000.

    19. Barbero, C., H. J. Salavagione, D. F. Acevedo, D. E. Grummelli, F. Garay, G. A. Planes, G. M. Morales, and M. C. Miras, "Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines," Electrochimica Acta, Vol. 49, No. 22-23, 3671-3686, 2004.

    20. Yang, J. P., R. J. Planes, A. Pron, and M. Nechtschein, "Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion," Synth. Met., Vol. 93, 169-173, 1998.

    21. Castillo-Ortega, M. M., D. E. Rodriguez, J. C. Encinas, M. Plascencia, F. A. Mendez-Velarde, and R. Olayo, "Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites," Sens. Actuat. B, Vol. 85, 19-25, 2002.

    22. Wang, Y., H.-Q. Xie, Y. Cai, and J. Guo, "Synthesis and properties of polyaniline/sodium and zinc ionomer composites," Polym. J., Vol. 29, No. 11, 875-880, 1997.

    23. Xie, H.-Q., Q.-L. Pu, and D. Xie, "Preparation of conductive polyaniline-sulfonated EPDM ionomer composites from in situ emulsion polymerization and study of their properties," J. Appl. Polym. Sci., Vol. 93, 2211-2217, 2004.

    24. Morgan, H., P. J. S. Foot, and N. W. Brooks, "The effects of composition and processing variables on the properties of thermoplastic polyaniline blends and composites," J. Mat. Sci., Vol. 36, No. 22, 5369-5377, 2001.

    25. Mathew, H., V. S. Punnackal, S. Kuriakose, B. S. Kumari, and A. Manuel, "Synthesis and electrical characterization of polyaniline-multiwalled carbon nanotube composites with different dopants," Int. J. Sci. Res. Pub., Vol. 3, No. 8, 1-10, 2013.

    26. Kumar, A., V. Kumar, M. Kumar, and K. Awasthi, "Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications," Polymer Composites, 2017, doi 10.1002/pc.24418.

    27. Abdullah, E. T., R. S. Ahmed, S. M. Hassan, and A. N. Naje, "Synthesis and characterization of PANI and polyaniline/multi walled carbon nanotube composite," Int. J. Application or Innovation Eng. Mgt., Vol. 4, No. 9, 130-134, 2015.

    28. Ratheesh, R. and K. Viswanathan, "Chemical polymerization of aniline using para-toluene sulphonic acid," IOSR J. Appl. Phy., Vol. 6, No. 1, 1-9, 2014.

    29. Rafeeq, S. N. and W. Z. Khalaf, "Preparation, characterization and electrical conductivity of doped polyaniline with (HCL and P-TSA)," The 5th International Scientific Conference for Nanotechnology and Advanced Materials and Their Applications ICNAMA, 3-4, 2015.

    30. Chakraborty, G., K. Gupta, D. Rana, and A. K. Meikap, "Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline," Adv. Nat. Sci.: Nanosci. Nanotechnol., Vol. 3, 1-8, 2012.

    31. Babu, V. J., S. Vempati, and S. Ramakrishna, "Conducting polyaniline-electrical charge transportation," Mat. Sci. Applications, Vol. 4, 1-10, 2013.

    32. Bachhav, S. G. and D. R. Patil, "Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior," Amer. J. Mat. Sci., Vol. 5, No. 4, 90-95, 2015.

    33. Painter, P. C., B. A. Brozoski, and M. M. Coleman, "FTIR studies of calcium and sodium ionomers derived from an ethylene-methacrylic acid and copolymer," J. Polym. Sci.: Polym. Phy., Vol. 20, No. 6, 1069-1080, 1982.

    34. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, No. 19, 6340-6347, 1999.

    35. Reynolds, P. J. and A. Surlyn®, "Ionomer as a self-healing and self-sensing composite,", MRes Thesis, Department of Metallurgy and Materials, University of Birmingham, UK, 2012.

    36. Ramos, J. M., M. T. de M Cruz, A. C. Costa, Jr., O. Versiane, and C. A. T. Soto, "Fourier transform infrared spectrum: Vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanido acetate) nickel (II) complex," Science Asia, Vol. 37, 247-255, 2011.

    37. Abdullah, E. T., S. M. Hassan, and R. S. Ahmed, "Electrical properties of polyani-line/functionalized multi walled carbon nanotubes nanocomposite," Int. J. Current Eng. Technol., Vol. 6, No. 2, 617-621, 2016.

    38. Wu, T.-M. and Y.-W. Lin, "Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties," Polym., Vol. 47, 3576-3582, 2006.

    39. Gajendran, P. and R. Saraswathi, "Polyaniline-carbon nanotube composites," Pure Appl. Chem., Vol. 80, No. 11, 2377-2395, 2008.

    40. Kutsumizu, S., H. Hara, H. Tachino, K. Shimabayashi, and S. Yano, "Infrared spectroscopic study of the binary blends of sodium and zinc salt ionomers produced from poly(ethylene-co-methacrylic acid)," Macromolecules, Vol. 32, 6340-6347, 1999.

    41. Pineri, M. and A. Eisenberg, "Structure and properties of ionomers," Nato Science Series C, Mathematical and Physical Sciences D, Vol. 198, Reidel Dordrecht, Netherlands, 1987.

    42. Schlick, S., Ionomers: Characterization, Theory and Applications, Taylor and Francis, CRC Press, Boca Raton, FL, 1996.

    43. Gazotti, Jr., W. A., G. Casalbore-Miceli, S. Mitzakoff, A. Geri, M. C. Gallazzi, and M.-A. De Paoli, "Conductive polymer blends as electrochromic materials," Electrochimica Acta, Vol. 44, 1965-1971, 1999.

    44. Shah, R. K. and D. R. Paul, "Comparison of nanocomposites prepared from sodium, zinc and lithium ionomers of ethylene/methacrylic acid copolymers," Macromolecules, Vol. 39, No. 9, 3327-3336, 2006.

    45. Kutsumizu, S., K. Tadano, Y. Matsuda, M. Goto, H. Tachino, H. Hara, E. Hirasawa, H. Tagawa, Y. Muroga, and S. Yano, "Investigation of microphase separation and thermal properties of noncrystalline ethylene ionomers. 2. IR, DSC and dielectric characterization," Macromolecules, Vol. 33, No. 24, 9044-9053, 2000.

    46. Ray, S., A. J. Easteal, R. P. Cooney, and N. R. Edmonds, "Structure and properties of melt-processed PVDF/PMMA/polyaniline blends," Mat. Chem. Phy., Vol. 113, 829-838, 2009.

    47. Kulkarni, M. V. and B. B. Kale, "Development of optical pH sensor using conducting polyaniline-wrapped multiwalled carbon nanotubes (PANI-MWCNTs) nanocomposite," IMCS 2012 - The 14th International Meeting on Chemical Sensors, 2012, DOI 10.5162/IMCS2012/P1.3.2.

    48. Khalid, M., M. A. Tumelero, I. S. Brandt, V. C. Zoldan, J. J. S. Acuna, and A. A. Pasa, "Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids," Indian J. Mat. Sci., Article ID 718304, 2013, doi.org/10.1155/2013/718304.

    49. Yılmaz, F. and Z. Kuqukyavuz, "Conducting polymer composites of multiwalled carbon nanotube filled doped polyaniline," J. Appl. Polym. Sci., Vol. 111, 680-684, 2009.

    50. Zhang, J.-Q., C.-M. Shi, T.-Z. Ji, G.-L. Wu, and K.-C. Kou, "Preparation and microwave absorbing characteristics of multi-walled carbon nanotube/chiral-polyaniline composites," Open J. Polym. Chem., Vol. 4, 62-72, 2014.

    51. Pazhanisamy, P. and B. S. R. Reddy, "Synthesis and characterization of methacrylamidopropy-ltrimethylammonium chloride and N-substituted acrylamide ionomers," Express Polym Letters, Vol. 1, No. 11, 740-747, 2007.

    52. Li, D. and G. S. Sur, "Comparison of poly(ethylene-co-acrylic acid) loaded Zn2+-montmorillonite nanocomposites and poly(ethylene-co-acrylic acid) zinc salt," J. Ind. Eng. Chem., Vol. 20, No. 5, 3122-3127, 2014.

    53. Kutsumizu, S., Y. Hashimoto, H. Hara, H. Tachino, E. Hirasawa, and S. Yano, "DC conduction properties of a model ethylene-methacrylic acid ionomer," Macromol, Vol. 27, No. 7, 1781-1787, 1994.

    54. Das, N. C., S. Yamazaki, M. Hikosaka, T. K. Chaki, D. Khastgir, and A. Chakraborty, "Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline ethylene vinyl acetate composites," Polym. Int., Vol. 54, 256-259, 2005.

    55. Chutia, P. and A. Kumar, "Electrical, optical and dielectric properties of HCl doped polyaniline nanorods," Physica B, Vol. 436, 200-207, 2014.

    56. Zilberman, M., A. Siegmann, and M. Narkis, "Conductivity and structure of melt-processed polyaniline binary and ternary blends," Polym. Adv. Technol., Vol. 11, 20-26, 2000.

    57. Terlemezyan, L., M. Mihailov, and B. Ivanova, "Electrically conductive polymer blends comprising polyaniline," Polym. Bull., Vol. 29, 283-287, 1992.

    58. Wang, Y., "Microwave absorbing materials based on polyaniline composites: A review," Int. J. Mat. Res., Vol. 105, No. 1, 3-12, 2014.

    59. Thomassin, J. M., C. Jerome, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, "Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials," Mat. Sci. Eng. Reports, Vol. 74, No. 7, 211-232, 2013.

    60. John, H., R. M. Thomas, J. Jacob, K. T. Mathew, and R. Joseph, "Conducting polyaniline composites as microwave absorbers," Polym. Comp., Vol. 28, No. 5, 588-582, 2007.

    61. Schmitza, D. P., L. G. Ecco, S. Dulb, E. C. L. Pereirac, B. G. Soares, G. M. O. Barraa, and A. Pegoretti, "Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling," Mater. Today Commun., Vol. 15, 70-80, 2018.