Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-11

Wide-Band Dual Sense Circularly Polarized Resonant Cavity Antenna for X Band Applications

By Swati Vaid and Ashok Mittal
Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018
doi:10.2528/PIERC18100804

Abstract

This paper presents the design and analysis of a wideband circularly polarized resonant cavity antenna (RCA). The antenna structure consists of dual-layer Jerusalem cross type partially reflective surface (PRS) above a two-port wideband circularly polarized patch antenna. The PRS enhances the gain of the feeding patch antenna over wide range of frequencies. The structure provides left hand as well as right hand circular polarizations. Parametric analysis of the structure is also presented. The measured 10 dB return loss bandwidth and 3 dB axial ratio bandwidth of the RCA are 25 % (8.24-10.63 GHz) and 28.8% (8.3 GHz-11.1 GHz), respectively. Isolation more than 10 dB is obtained for the frequency range 9.15-10.61 GHz. Measured results show peak realized gain of 9 dBi in the operating band.

Citation


Swati Vaid and Ashok Mittal, "Wide-Band Dual Sense Circularly Polarized Resonant Cavity Antenna for X Band Applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018.
doi:10.2528/PIERC18100804
http://www.jpier.org/PIERC/pier.php?paper=18100804

References


    1. Maqsood, M., S. Gao, T. W. C. Brown, M. Unwin, R. De Vos Van Steenwijk, and J. D. Xu, "A compact multipath mitigating ground plane for multiband GNSS antennas," IEEE Trans. Antennas Propag., Vol. 61, 2775-2782, 2013.
    doi:10.1109/TAP.2013.2243692

    2. Ram Krishna, R. V. S., R. Kumar, and N. Kushwaha, "A circularly polarized slot antenna for high gain applications," Int. J. Electron. Commun. (AEU), Vol. 68, 1119-1128, 2014.
    doi:10.1016/j.aeue.2014.05.018

    3. Kushwaha, N. and R. Kumar, "Design of a wideband high gain antenna using FSS for circularly polarized applications," Int. J. Electron. Commun. (AEU), Vol. 70, 1156-1163, 2016.
    doi:10.1016/j.aeue.2016.05.013

    4. Vaid, S. and A. Mittal, "High gain planar resonant cavity antennas based on metamaterial and frequency selective surfaces," Int. J. Electron. Commun. (AEU), Vol. 69, 1387-1392, 2015.
    doi:10.1016/j.aeue.2015.05.014

    5. Diblanc, M., E. Rodes, E. Arnaud, M. Thevenot, T. Monediere, and B. Jecko, "Circularly polarized metallic EBG antenna," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 638-640, 2005.
    doi:10.1109/LMWC.2005.856689

    6. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 215-218, 2010.
    doi:10.1109/LAWP.2010.2045098

    7. Chiu, S.-C. and S.-Y. Chen, "High-gain circularly polarized resonant cavity antenna using FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 2242-2245, 2011.

    8. Chiu, S.-C. and S.-Y. Chen, "Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 1-2, 2012.

    9. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, 1770-1774, 2012.
    doi:10.1002/mop.26884

    10. Orr, R., G. Goussetis, and V. Fusco, "Design method for circularly polarized Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, 19-26, 2013.
    doi:10.1109/TAP.2013.2286839

    11. Liu, Z.-G., Z.-X. Cao, and L.-N. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 524-527, 2016.
    doi:10.1109/LAWP.2015.2456886

    12. Muhammad, S. A., R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, "Self-polarizing Fabry-Perot antennas based on polarization twisting element," IEEE Trans. Antennas Propag., Vol. 61, 1032-1040, 2013.
    doi:10.1109/TAP.2012.2227443

    13. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and P. Wee Sang, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microw. Opt. Technol. Lett., Vol. 49, 199-201, 2007.
    doi:10.1002/mop.22084

    14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
    doi:10.1109/LAWP.2014.2308926

    15. Ju, J. and D. Kim, "Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding," Electron. Lett., Vol. 49, 1198-1200, 2013.
    doi:10.1049/el.2013.1543

    16. Cao, T., Y. Li, X. Zhang, and Y. Zou, "Theoretical study of tunable chirality from graphene integrated achiral metasurfaces," Photonics Research, Vol. 5, No. 5, 441-449, 2017.
    doi:10.1364/PRJ.5.000441

    17. Cao, T., C. Wei, and Y. Li, "Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface," Optical Materials Express, Vol. 6, 303-311, 2016.
    doi:10.1364/OME.6.000303

    18. Cao, T., C. Wei, L. B. Mao, and S. Wang, "Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene," Optics Express, Vol. 23, 18620-18629, 2015.
    doi:10.1364/OE.23.018620

    19. Cao, T., C. Wei, L. B. Mao, and Y. Li, "Extrinsic 2D chirality: Giant circular conversion dichroism from a metal-dielectric-metal square array," Scientific Reports, Vol. 4, 7442, 2014.

    20. Cao, T., C. Wei, and L. Zhang, "Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials," Optical Materials Express, Vol. 4, 1526-1534, 2014.
    doi:10.1364/OME.4.001526

    21. Cao, T. and M. J. Cryan, "Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial," Journal of Optics, Vol. 14, 085101, 2012.
    doi:10.1088/2040-8978/14/8/085101

    22. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, 2463-2471, 2014.
    doi:10.1109/TAP.2014.2308533

    23. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, 2012.
    doi:10.1109/TAP.2011.2173113

    24. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas Propag. Magazine, Vol. 57, 127-135, 2015.
    doi:10.1109/MAP.2015.2470678

    25. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
    doi:10.2528/PIERC17011103

    26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propag. Magazine, Vol. 54, 35-48, 2012.
    doi:10.1109/MAP.2012.6309153

    27. Hosseini, M. and M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 58-61, 2008.
    doi:10.1109/LAWP.2008.917605