Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-06

Simulation and Precipitation Detection in the Tropical Cyclones Based on the Microwave Humidity and Temperature Sounder Onboard the Fengyun-3c Satellite

By Na Li, Shengwei Zhang, and Jieying He
Progress In Electromagnetics Research C, Vol. 88, 269-283, 2018
doi:10.2528/PIERC18101404

Abstract

Tropical cyclone (TC) is part of the most serious natural disasters. Western Pacific is the region with the highest frequency of tropical cyclones (TCs). By simulating and correcting the brightness temperatures (TBs) of the microwave humidity and temperature sounder (MWHTS) onboard the Fengyun-3C (FY-3C) satellite, a method is proposed to observe the TCs in the Western Pacific. The Weather Research and Forecasting Model (WRF) and the fast Radiative Transfer model for TOVS (RTTOV) are adopted in our method. Then, simulated TBs are linearly corrected based on the field-of-views (FOVs), channels and latitude bands. After that, the biases of all channels are within 2 K and close to zero, and the RMSEs are less than 10-K except Channels 10 and 15. Therefore, this WRF/RTTOV method can be implemented in other TCs in the Western Pacific region. In addition, a precipitation detection algorithm is proposed and used to detect precipitation in the TC area. Compared with the FY-3C MWHTS and Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) precipitation products, the results indicate that our precipitation detection algorithm has reached better indicators. The potential application can lay a foundation for precipitation rate retrieval and further research.

Citation


Na Li, Shengwei Zhang, and Jieying He, "Simulation and Precipitation Detection in the Tropical Cyclones Based on the Microwave Humidity and Temperature Sounder Onboard the Fengyun-3c Satellite," Progress In Electromagnetics Research C, Vol. 88, 269-283, 2018.
doi:10.2528/PIERC18101404
http://www.jpier.org/PIERC/pier.php?paper=18101404

References


    1., , Available online: https://en.wikipedia.org/wiki/Tropical_cyclone (accessed on Oct. 9, 2018).

    2. Mitchell, T., D. Guha-Sapir, J. Hall, E. Lovell, R. Muir-Wood, A. Norris, L. Scott, and P. Wallemacq, "Setting, measuring and monitoring targets for reducing disaster risk," Recommendations for Post-2015 International Policy Frameworks, ODI, 2014.
    doi:10.1109/IGARSS.2015.7326569

    3. Zhang, Y., H. Liu, J. Wu, J. He, and C. Zhang, "In target brightness temperature simulation and analysis for the geostationary interferometric microwave sounder (GIMS)," 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3477-3480, IEEE, 2015.
    doi:10.1109/IGARSS.2016.7729105

    4. Zhang, Y., H. Liu, J. Wu, C. Zhang, and J. He, "In analysis and simulation of GIMS observation on dynamic targets," 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 426-429, IEEE, 2016.
    doi:10.3390/jimaging2020017

    5. Camps, A., H. Park, J. Bandeiras, J. Barbosa, A. Sousa, S. d’Addio, and M. Martin-Neira, "Microwave imaging radiometers by aperture synthesis - Performance simulator (Part 1): Radiative transfer module," Journal of Imaging, Vol. 2, 17, 2016.
    doi:10.1109/TGRS.2014.2363682

    6. He, J., S. Zhang, and Z. Wang, "Advanced microwave atmospheric sounder (AMAS) channel specifications and T/V calibration results on FY-3C satellite," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 481-493, 2015.
    doi:10.1109/IGARSS.2012.6350423

    7. Zhang, S., J. Li, Z. Wang, H. Wang, M. Sun, J. Jiang, and J. He, "In design of the second generation microwave humidity sounder (MWHS-II) for chinese meteorological satellite FY-3," 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),, 4672-4675, IEEE, 2012.
    doi:10.1109/IGARSS.2017.8128002

    8. Li, N., J. He, S. Zhang, and N. Lu, "In rainfall retrievals using 118 GHz and 183 GHz channels of MWHS-II on FY-3C meteorological satellite," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 4505-4508, IEEE, 2017.

    9. Chen, Y., F. Weng, Y. Han, and Q. Liu, "Validation of the community radiative transfer model by using cloudsat data," Journal of Geophysical Research: Atmospheres, 113, 2008.

    10. Han, Y., P. van Delst, F. Weng, Q. Liu, D. Groff, B. Yan, Y. Chen, and R. Vogel, "In an overview on the JCSDA community radiative transfer model (CRTM) Version 2," Proc. 6th Annu. Symp. Future Nat. Oper. Environ. Satellite Syst.-NPOESS GOES-R, 2010.

    11. Van Delst, P., Crtm: V2. 0 User Guide. Joint Center for Satellite Data Assimilation, Camp Springs, Maryland, USA, 2011.
    doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2

    12. Ritchie, E. A. and G. J. Holland, "Large-scale patterns associated with tropical cyclogenesis in the western pacific," Monthly Weather Review, 2027-2043, 1999.

    13., , Available online: http://weather.unisys.com/hurricanes/search (accessed on Oct. 9, 2018).

    14., , Available online: https://rda.ucar.edu/datasets/ds083.2/(accessed on Oct. 9, 2018).

    15. Zhao, T., C. Fu, Z. Ke, and W. Guo, "Global atmosphere reanalysis datasets: Current status and recent advances," Advances in Earth Science, Vol. 3, 2, 2010.

    16., "A description of the advanced research WRF Version 3,", Tech. Note, 1–96, 2008.
    doi:10.1016/j.jcp.2007.01.037

    17. Skamarock, W. C. and J. B. Klemp, "A time-split nonhydrostatic atmospheric model for weather research and forecasting applications," Journal of Computational Physics, Vol. 227, 3465-3485, 2008.
    doi:10.1016/j.jcp.2007.01.037

    18., , Available online: http://www2.mmm.ucar.edu/wrf/users/(accessed on Oct. 9, 2018).

    19. Hocking, J., P. Rayer, D. Rundle, R. Saunders, M. Matricardi, A. Geer, P. Brunel, and J. Vidot, "Rttov v11 Users Guide," Met Office, Exeter, UK; ECMWF, 2015.
    doi:10.1175/JTECH-D-11-00023.1

    20. Zou, X., X. Wang, F. Weng, and G. Li, "Assessments of Chinese Fengyun microwave temperature sounder (MWTS) measurements for weather and climate applications," Journal of Atmospheric and Oceanic Technology, Vol. 28, 1206-1227, 2011.

    21. Hong, S.-Y. and J.-O. J. Lim, "The WRF single-moment 6-class microphysics scheme (WSM6)," J. Korean Meteor. Soc., Vol. 42, 129-151, 2006.
    doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

    22. Kain, J. S., "The Kain-Fritsch convective parameterization: An update," Journal of Applied Meteorology, Vol. 43, 170-181, 2004.
    doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

    23. Dudhia, J., "Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model," Journal of the Atmospheric Sciences, Vol. 46, 3077-3107, 1989.
    doi:10.1029/97JD00237

    24. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, "Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave," Journal of Geophysical Research: Atmospheres, Vol. 102, 16663-16682, 1997.
    doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

    25. Chen, F. and J. Dudhia, "Coupling an advanced land surface - hydrology model with the penn state - NCAR MM5 modeling system. Part I: Model implementation and sensitivity," Monthly Weather Review, Vol. 129, 569-585, 2001.

    26. Tewari, M., F. Chen, W. Wang, J. Dudhia, M. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. Cuenca, "Implementation and verification of the unified noah land surface model in the WRF model," 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 2004.
    doi:10.1175/MWR3199.1

    27. Hong, S.-Y., Y. Noh, and J. Dudhia, "A new vertical diffusion package with an explicit treatment of entrainment processes," Monthly Weather Review, Vol. 134, 2318-2341, 2006.

    28. Shimadera, H., A. Kondo, K. L. Shrestha, K. Kitaoka, and Y. Inoue, "Numerical evaluation of the impact of urbanization on summertime precipitation in Osaka, Japan," Advances in Meteorology, 2015.
    doi:10.1002/qj.49712757418

    29. Harris, B. and G. Kelly, "A satellite radiance-bias correction scheme for data assimilation," Quarterly Journal of the Royal Meteorological Society, Vol. 127, 1453-1468, 2001.
    doi:10.1109/TGRS.2002.808312

    30. Wilheit, T., C. D. Kummerow, and R. Ferraro, "Nasdarainfall algorithms for AMSR-E," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 204-214, 2003.
    doi:10.1029/91JD00045

    31. Grody, N. C., "Classification of snow cover and precipitation using the special sensor microwave imager," Journal of Geophysical Research: Atmospheres, Vol. 96, 7423-7435, 1991.

    32. Li, N., J. He, S. Zhang, and N. Lu, "Global precipitation detection based on MWHS-II from China FY-3C meteorological satellite," 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 923-926, IEEE, 2018.
    doi:10.1002/2013WR014566

    33. Behrangi, A., Y. Tian, B. H. Lambrigtsen, and G. L. Stephens, "What does cloudsat reveal about global land precipitation detection by other spaceborne sensors?," Water Resources Research, Vol. 50, 4893-4905, 2014.
    doi:10.1109/JSTARS.2017.2672786

    34. Wang, W., H. Lu, T. Zhao, L. Jiang, and J. Shi, "Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the mekong river basin," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, 2540-2549, 2017.
    doi:10.1109/LGRS.2017.2666814

    35. Yamamoto, M. K., I. Tanaka, and S. Shige, "Improvement of the rain/no-rain classification method for microwave radiometers over the tibetan plateau," IEEE Geoscience and Remote Sensing Letters, Vol. 14, 626-630, 2017.
    doi:10.5194/hess-15-2649-2011

    36. Scheel, M., M. Rohrer, C. Huggel, D. S. Villar, E. Silvestre, and G. Huffman, "Evaluation of trmm multi-satellite precipitation analysis (TMPA) performance in the central andes region and its dependency on spatial and temporal resolution," Hydrology and Earth System Sciences, Vol. 15, 2649-2663, 2011.
    doi:10.5194/hess-18-3179-2014

    37. Ochoa, A., L. Pineda, P. Crespo, and P. Willems, "Evaluation of trmm 3b42 precipitation estimates and wrf retrospective precipitation simulation over the Pacific-Andean region of ecuador and peru," Hydrology and Earth System Sciences, Vol. 18, 3179-3193, 2014.
    doi:10.1002/2013JD019964

    38. Chen, S., Y. Hong, Q. Cao, J. J. Gourley, P. E. Kirstetter, B. Yong, Y. Tian, Z. Zhang, Y. Shen, and J. Hu, "Similarity and difference of the two successive v6 and v7 TRMM multisatellite precipitation analysis performance over China," Journal of Geophysical Research: Atmospheres, Vol. 118, 13060-13074, 2013.