Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-02-27

Spherical Mapping of the Second-Order Phoenix Cell for Unbounded Direct Reflectarray Copolar Optimization

By Vincent Richard, Renaud Loison, Raphael Gillard, Herve Legay, Maxime Romier, Jean-Paul Martinaud, Daniele Bresciani, and Fabien Delepaux
Progress In Electromagnetics Research C, Vol. 90, 109-124, 2019
doi:10.2528/PIERC18102303

Abstract

A general synthesis approach is proposed for reflectarrays using second order Phoenix cells. It relies on an original spherical representation that transforms the optimization domain in a continuous and unbounded space with reduced dimension. This makes the synthesis problem simpler and automatically guarantees smooth variations in the optimized layout. The proposed mapping is combined with an Artificial Neural Network (ANN) based behavioral model of the cell and integrated in a min/max optimization process. Bi-cubic spline expansions are used to decrease the number of variables. As an application, a contoured beam for space communication in the [3.6-4.2] GHz band is considered. The gain improvement compared to an initial Phase Only synthesis (POS) is up to 1.62 dB at the upper frequency. Full wave simulation of the final array is provided as a validation.

Citation


Vincent Richard, Renaud Loison, Raphael Gillard, Herve Legay, Maxime Romier, Jean-Paul Martinaud, Daniele Bresciani, and Fabien Delepaux, "Spherical Mapping of the Second-Order Phoenix Cell for Unbounded Direct Reflectarray Copolar Optimization," Progress In Electromagnetics Research C, Vol. 90, 109-124, 2019.
doi:10.2528/PIERC18102303
http://www.jpier.org/PIERC/pier.php?paper=18102303

References


    1. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley-IEEE Press, Nov. 2007, ISBN: 978-0- 470-08491-5.

    2. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1403-1410, Oct. 2001.
    doi:10.1109/8.954929

    3. Karimipour, M., A. Pirhadi, and N. Ebrahimi, "Accurate method for synthesis of shaped-beam non-uniform reflectarray antenna," IET Microwaves, Antennas and Propagation, Vol. 7, No. 15, 1247-1253, Dec. 2013.
    doi:10.1049/iet-map.2013.0123

    4. Encinar, J. A. and J. A. Zornoza, "Three-layer printed reflectarrays for contoured beam space applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1138-1148, May 2004.
    doi:10.1109/TAP.2004.827506

    5. Zhou, M., S. B. Sorensen, R. Jorgensen, O. Borries, E. Jorgensen, and G. Toso, "High-performance curved contoured beam reflectarrays with reusable surface for multiple coverages," 2017 11th European Conference on Antennas and Propagation (EUCAP), 71-75, Mar. 2017.
    doi:10.23919/EuCAP.2017.7928456

    6. Legay, H., D. Bresciani, E. Labiole, R. Chiniard, R. Gillard, and G. Toso, "Measurement of a 1.3m reflectarray antenna in at panels in ku band," 2012 International Symposium on Antennas and Propagation (ISAP), 231-234, Oct. 2012.

    7. Hasani, H., C. Peixeiro, A. K. Skrivervik, and J. Perruisseau-Carrier, "Single-layer quad-band printed reflectarray antenna with dual linear polarization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5522-5528, Dec. 2015.
    doi:10.1109/TAP.2015.2481918

    8. Florencio, R., J. A. Encinar, R. R. Boix, V. Losada, and G. Toso, "Reflectarray antennas for dual polarization and broadband telecom satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1234-1246, Apr. 2015.
    doi:10.1109/TAP.2015.2391279

    9. Bucci, O. M., A. Capozzoli, G. D’Elia, and S. Musto, "A new approach to the power pattern synthesis of reflectarrays," Proc. URSI International Symposium on Electromagnetic Theory (EMTS’04), 1053-1055, 2004.

    10. Zhou, M., S. B. Srensen, O. S. Kim, E. Jrgensen, P. Meincke, and O. Breinbjerg, "Direct optimization of printed reflectarrays for contoured beam satellite antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1995-2004, Apr. 2013.
    doi:10.1109/TAP.2012.2232037

    11. Wan, C. and J. A. Encinar, "Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 11, 1233-1242, Nov. 1995.

    12. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non resonant constituting elements," Int. Journal of Antennas and Propag., Vol. 58, No. 12, 4033-4041, Dec. 2010.
    doi:10.1109/TAP.2010.2078474

    13. Liang, L. and S. V. Hum, "An impedance surface-based method for designing wideband reflectarrays," 2015 IEEE Int. Sym. on Ant. and Propag. USNC/URSI Nat. Radio Science Meeting, 2135-2136, Jul. 2015.

    14. Zhou, M., S. B. Sorensen, N. Vesterdal, R. Dickie, P. Baine, J. Montgomery, R. Cahill, M. Henry, P. G. Huggard, and G. Toso, "Design of aperiodic frequency selective surfaces for compact quasioptical networks," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1274-1278, Mar. 2017.
    doi:10.23919/EuCAP.2017.7928454

    15. Hum, S. V. and B. Du, "Equivalent circuit modeling for reflectarrays using oquet modal expansion," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1131-1140, Mar. 2017.
    doi:10.1109/TAP.2017.2657483

    16. Robustillo, P., J. Zapata, J. A. Encinar, and J. Rubio, "Ann characterization of multi-layer reflectarray elements for contoured-beam space antennas in the ku-band," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3205-3214, Jul. 2012.
    doi:10.1109/TAP.2012.2196941

    17. Freni, A., M. Mussetta, and P. Pirinoli, "Neural network characterization of reflectarray antennas," Int. Journal of Antennas and Propag., Vol. 2012, Article ID 541354, 10 pages, May 2012.

    18. Robustillo, P., J. Zapata, J. A. Encinar, and M. Arrebola, "Design of a contoured-beam reflectarray for a eutelsat european coverage using a stacked-patch element characterized by an artificial neural network," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 977-980, 2012.
    doi:10.1109/LAWP.2012.2213567

    19. Richard, V., R. Loison, R. Gillard, H. Legay, and M. Romier, "Optimized artificial neural network for reflectarray cell modelling," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 1211-1212, Jun. 2016.
    doi:10.1109/APS.2016.7696313

    20. Richard, V., R. Loison, R. Gillard, H. Legay, and M. Romier, "Loss analysis of a reflectarray cell using anns with accurate magnitude prediction," 2017 11th European Conference on Antennas and Propagation (EUCAP), 2396-2399, Mar. 2017.
    doi:10.23919/EuCAP.2017.7928256

    21. Salucci, M., L. Tenuti, G. Oliveri, and A. Massa, "Efficient prediction of the em response of reflectarray antenna elements by an advanced statistical learning method," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 3995-4007, Aug. 2018.
    doi:10.1109/TAP.2018.2835566

    22. Engineering Consultants, POS, User’s Manual, TICRA, 2001.

    23. Zhou, M., S. B. Srensen, E. Jrgensen, and P. Meincke, "Efficient optimization of large reflectarrays using continuous functions," 2013 7th European Conference on Antennas and Propagation (EuCAP), 2952-2956, Apr. 2013.

    24. Milon, M. A., R. Gillard, D. Cadoret, and H. Legay, "Analysis of mutual coupling for the simulation of reflectarrays radiating cells," 2006 First European Conference on Antennas and Propagation, 1-6, Nov. 2006.

    25. Marnat, L., R. Loison, R. Gillard, D. Bresciani, and H. Legay, "Comparison of synthesis strategies for a dual-polarized reflectarray," Int. Journal of Antennas and Propag., Vol. 2012, Article ID 708429, 10 pages, 2012.

    26. Moustafa, L., R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, "The Phoenix cell: A new reflectarray cell with large bandwidth and rebirth capabilities," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 71-74, 2011.
    doi:10.1109/LAWP.2011.2108633

    27. Makdissy, T., R. Gillard, E. Fourn, M. Ferrando-Rocher, E. Girard, H. Legay, and L. Le Coq, "Phoenix: Reflectarray unit cell with reduced size and inductive loading," IET Microwaves Antennas Propagation, Vol. 10, 1363-1370, 2016.
    doi:10.1049/iet-map.2015.0626

    28. Salti, H. and R. Gillard, "A single layer stub-patch phoenix cell for large band reflectarrays," 2017 11th European Conf. on Ant. and Propag., 2405-2408, Mar. 2017.

    29. Zhang, K., Y. Fan, J. Xu, and C. Qu, "Design of broadband, low cost single layer reflectarray using phoenix cell," 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), 1-4, Oct. 2013.

    30. Hald, J. and K. Madsen, "Combined lp and quasi newton methods for minimax optimization," Math. Programming, Vol. 20, 49-62, 1981.
    doi:10.1007/BF01589332

    31. Legay, H., D. Bresciani, E. Labiole, R. Chiniard, and R. Gillard, "A multi facets composite panel reflectarray antenna for a space contoured beam antenna in ku band," Progress In Electromagnetics Research, Vol. 54, 1-26, 2013.

    32. Encinar, J. A., M. Arrebola, L. F. de la Fuente, and G. Toso, "A transmit-receive reflectarray antenna for direct broadcast satellite applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3255-3264, Sept. 2011.
    doi:10.1109/TAP.2011.2161449

    33. De Boor, C., A Practical Guide to Splines, Vol. 27, Springer-Verlag, New York, 1978.
    doi:10.1007/978-1-4612-6333-3

    34. Zhou, M., O. Borries, and E. Jrgensen, "Design and optimization of a single-layer planar transmitreceive contoured beam reflectarray with enhanced performance," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1247-1254, Apr. 2015.
    doi:10.1109/TAP.2014.2365039

    35. Encinar, J. A. and M. Arrebola, "Reduction of cross-polarization in contoured beam reflectarrays using a three-layer configuration," 2007 IEEE Antennas and Propagation Society International Symposium, 5303-5306, IEEE, 2007.
    doi:10.1109/APS.2007.4396744

    36. Martinaud, J. P., S. Nosal, and G. Salin, "Domain decomposition techniques for the scattering by partly bor objects application to the antenna-radome modeling," 2011 International Conference on Electromagnetics in Advanced Applications, 144-147, Sep. 2011.
    doi:10.1109/ICEAA.2011.6046296