Vol. 91

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-03-07

Electromagnetic Wave Scattering from an Infinite Periodic Array of Hollow Conducting Circular Cylinders of Finite Length

By Hongchang An and Akira Matsushima
Progress In Electromagnetics Research C, Vol. 91, 1-13, 2019
doi:10.2528/PIERC18111403

Abstract

An effective numerical technique is demonstrated for the plane wave scattering from an infinite periodic array of hollow circular cylinders of finite length. The cylinders are made of infinitely thin perfect conductor and allocated in the axial direction. We formulate the boundary value problem into a set of integral equations for the unknown electric current densities flowing in the circumferential and longitudinal directions. Employment of the Galerkin method allows us to solve simultaneous linear equations for the expansion coefficients of the unknown current, from which we can find the field distributions in both far and near regions. The procedure of analytical regularization makes the linear system into the Fredholm second kind that is contributory to stable and rapidly convergent results. Resonance is detected as abrupt changes in the total scattering cross sections for each grating mode, and it is accompanied by the formation of circular cavity mode pattern in the cylinder.

Citation


Hongchang An and Akira Matsushima, "Electromagnetic Wave Scattering from an Infinite Periodic Array of Hollow Conducting Circular Cylinders of Finite Length," Progress In Electromagnetics Research C, Vol. 91, 1-13, 2019.
doi:10.2528/PIERC18111403
http://www.jpier.org/PIERC/pier.php?paper=18111403

References


    1. Williams, W. E., "Diffraction by a cylinder of finite length," Proc. Camb. Phil. Soc., Vol. 52, No. 2, 322-335, 1956.
    doi:10.1017/S0305004100031303

    2. Aoki, K., "Diffraction of plane electromagnetic waves from a conductive circular cylinder of finite length," J. IECE, Vol. 44, No. 9, 51-56, 1961 (in Japanese).

    3. Kinoshita, T. and T. Sekiguchi, "Scattering of a plane electromagnetic wave by a conducting circular cylinder of finite length," Electron. Commun. Jpn. (Part I), Vol. 64, No. 5, 80-88, 1981.
    doi:10.1002/ecja.4410640510

    4. Kao, C. C., "Three-dimensional electromagnetic scattering from a circular tube of finite length," J. Appl. Phys., Vol. 40, No. 12, 4732-4740, 1969.
    doi:10.1063/1.1657281

    5. Medgyesi-Mitschang, L. N. and C. Eftimiu, "Scattering from wires and open circular cylinders of finite length using entire domain Galerkin expansions," IEEE Trans. Antennas Propag., Vol. 30, No. 4, 628-636, 1982.
    doi:10.1109/TAP.1982.1142873

    6. Davis, A. M. J. and R. W. Scharstein, "Electromagnetic plane wave excitation of an open-ended, finite-length conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 2, 301-319, 1993.
    doi:10.1163/156939393X00354

    7. Lucido, M., M. D. Migliore, and D. Pinchera, "A new analytically regularizing method for the analysis of the scattering by a hollow finite-length PEC circular cylinder," Progress In Electromagnetics Research B, Vol. 70, 55-71, 2016.
    doi:10.2528/PIERB16081404

    8. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

    9. Nosich, A. I., "Method of analytical regularization in computational photonics," Radio Sci., Vol. 51, No. 8, 1421-1430, 2016.
    doi:10.1002/2016RS006044

    10. Freni, A., C. Mias, and R. L. Ferrari, "Hybrid finite-element analysis of electromagnetic plane wave scattering from axially periodic cylindrical structures," IEEE Trans. Antennas Propagat., Vol. 46, No. 12, 1859-1866, 1998.
    doi:10.1109/8.743824

    11. Kishk, A. A., P.-S. Kildal, A. Monorchio, and G. Manara, "Asymptotic boundary condition for corrugated surfaces, and its application to scattering from circular cylinders with dielectric filled corrugations," IEE Proc. Microw. Antennas Propagat., Vol. 145, No. 1, 116-122, 1998.
    doi:10.1049/ip-map:19981569

    12. Kishk, A. A., "Electromagnetic scattering from transversely corrugated cylindrical structures using the asymptotic corrugated boundary conditions," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3104-3108, 2004.
    doi:10.1109/TAP.2004.835234

    13. Dincer, F., M. Karaaslan, S. Colak, E. Tetik, O. Akgol, O. Altıntas, and C. Sabah, "Multiband polarization independent cylindrical metamaterial absorber and sensor application," Modern Physics Letters B, Vol. 30, No. 8, 1650095, 2016.
    doi:10.1142/S0217984916500950

    14. Bakir, M., M. Karaaslan, O. Akgol, O. Altıntas, E. Unal, and C. Sabah, "Sensory applications of resonator based metamaterial absorber," Optik, Vol. 168, 741-746, 2018.
    doi:10.1016/j.ijleo.2018.05.002

    15. Alkurt, F. O., O. Altıntas, A. Atci, M. Bakir, E. Unal, O. Akgol, K. Delihacioglu, M. Karaaslan, and C. Sabah, "Antenna-based microwave absorber for imaging in the frequencies of 1.8, 2.45, and 5.8GHz," Optical Engineering, Vol. 57, No. 11, 113102, 2018.
    doi:10.1117/1.OE.57.11.113102

    16. Agranovich, Z. S. and V. P. Shestopalov, "Distribution of electromagnetic waves in a circular waveguide," Soviet Phys. — Tech. Phys., Vol. 9, No. 11, 1504-1511, 1965.

    17. Zinenko, T. L., A. Matsushima, and A. I. Nosich, "Surface-plasmon, grating-mode, and slab-mode Resonances in the H- and E-polarized THz wave scattering by a graphene strip grating embedded into a dielectric slab," IEEE J. Selected Topics in Quantum Electronics, Vol. 23, No. 4, 4601809, 2017.
    doi:10.1109/JSTQE.2017.2684082

    18. Matsushima, A. and T. Itakura, "Singular integral equation approach to electromagnetic scattering from a finite periodic array of conducting strips," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 6, 545-562, 1991.
    doi:10.1163/156939391X00680

    19. Matsushima, A. and T. Itakura, "Accurate numerical analysis of inductive windows in a rectangular waveguide by singular integral equations," Electron. Commun. Jpn. (Part I), Vol. 70, No. 6, 111-121, 1987.
    doi:10.1002/ecja.4410700611

    20. Mittra, R., T. Itoh, T. S. Li, and , "Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method," IEEE Trans. Microwave Theory Tech., Vol. 20, No. 2, 96-104, 1972.
    doi:10.1109/TMTT.1972.1127691

    21. Geng, N. and L. Carin, "Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 610-619, 1999.
    doi:10.1109/8.768799

    22. Amitay, N. and V. Galindo, "On energy conservation and the method of moments in scattering problems," IEEE Trans. Antennas Propagat., Vol. 17, No. 7, 747-751, 1969.
    doi:10.1109/TAP.1969.1139549

    23. Hessel, A. and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied Optics, Vol. 4, No. 10, 1275-1297, 1965.
    doi:10.1364/AO.4.001275

    24. Pozar, D. M., Microwave Engineering, 4th Edition, John Wiley & Sons, 2012.

    25. Kundracik, F., M. Kocifaj, G. Videen, and J. Klaˇcka, "Effect of charged-particle surface excitations on near-field optics," Applied Optics, Vol. 54, No. 22, 6674-6681, 2015.
    doi:10.1364/AO.54.006674

    26. Klacka, J., M. Kocifaj, F. Kundracik, G. Videen, and I. Kohut, "Generalization of electromagnetic scattering by charged grains through incorporation of interband and intraband effects," Optics Letters, Vol. 40, No. 21, 5070-5073, 2015.
    doi:10.1364/OL.40.005070

    27. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Surface-integral equations for electromagnetic scattering from impenetrable and penetrable sheets," IEEE Antennas Propag. Mag., Vol. 35, No. 6, 14-25, 1993.
    doi:10.1109/74.248480

    28. Ji, X., D. Sakomura, A. Matsushima, and T. Suyama, "Light scattering from two-dimensional periodic arrays of noble-metal disks and complementary circular apertures," Progress In Electromagnetics Research M, Vol. 43, 119-133, 2015.
    doi:10.2528/PIERM15040201