Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-03-01

A CMOS Power Amplifier Using a Balun Embedded Driver Stage for IEEE 802.11N WLAN Applications

By Minoh Son, Jinho Yoo, Changhyun Lee, and Changkun Park
Progress In Electromagnetics Research C, Vol. 90, 169-181, 2019
doi:10.2528/PIERC18120705

Abstract

In this work, we propose a balun embedded driver stage to enhance the bandwidth and minimize the chip size of a differential CMOS power amplifier. By removing the passive input transformer, the bandwidth and chip size are improved. The proposed driver stage acts as an input balun as well as the driver stage for the power stage. The proposed driver is composed of a cascade connected PMOS, an inductor, and NMOS to generate the differential output signal. For the function of the input balun, the gate of the PMOS is connected to the drain of the NMOS. To verify the feasibility of the proposed balun embedded driver stage, we design a differential CMOS power amplifier for 5-GHz IEEE 802.11n WLAN applications. The designed power amplifier is fabricated using the 180-nm SOI RF CMOS process. The measured 3-dB bandwidth is approximately 2.5 GHz. The chip size of the fully integrated power amplifier, including input and output matching networks and test pads, is 0.885 mm2. The measured maximum output power is 20.18 dBm with a PAE of 10.16%.

Citation


Minoh Son, Jinho Yoo, Changhyun Lee, and Changkun Park, "A CMOS Power Amplifier Using a Balun Embedded Driver Stage for IEEE 802.11N WLAN Applications," Progress In Electromagnetics Research C, Vol. 90, 169-181, 2019.
doi:10.2528/PIERC18120705
http://www.jpier.org/PIERC/pier.php?paper=18120705

References


    1. Moon, K., Y. Cho, J. Kim, S. Jin, S. Kim, and B. Kim, "An HBT saturated power amplifier with minimized knee effect for envelope tracking operation," IEEE Microw. Wireless Compon. Lett., Vol. 25, 544-546, 2015.
    doi:10.1109/LMWC.2015.2440771

    2. Lin, L., L. Zhou, R.Wang, L. Tong, and W.-Y. Lin, "Electrothermal effects on performance of GaAs HBT power amplifier during power versus time (PVT) variation at GSM/DCS bands," IEEE Trans. Microw. Theory Techn., Vol. 63, 1951-1963, 2015.
    doi:10.1109/TMTT.2015.2424695

    3. Griffith, Z., M. Urteaga, P. Rowell, and R. Pierson, "A 6–10mW power amplifier at 290–307.5 GHz in 250 nm InP HBT," IEEE Microw. Wireless Compon. Lett., Vol. 25, 597-599, 2015.
    doi:10.1109/LMWC.2015.2451360

    4. Yoon, S., I. Lee, M. Urteaga, M. Kim, and S. Jeon, "A fully-integrated 40–222 GHz InP HBT distributed amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 24, 460-462, 2014.
    doi:10.1109/LMWC.2014.2316223

    5. Giammello, V., E. Ragonese, and G. Palmisano, "A transformer-coupling current-reuse SiGe HBT power amplifier for 77-GHz automotive radar," IEEE Trans. Microw. Theory Techn., Vol. 60, 1676-1683, 2012.
    doi:10.1109/TMTT.2012.2189243

    6. Karthaus, U., D. Sukumaran, S. Tontisirin, S. Ahles, A. Elmaghraby, L. Schmidt, and H. Wagner, "Fully integrated 39 dBm, 3-stage doherty PA MMIC in a low-voltage GaAs HBT technology," IEEE Microw. Wireless Compon. Lett., Vol. 22, 94-96, 2012.
    doi:10.1109/LMWC.2011.2181829

    7. Lin, J., C. C. Boon, X. Yi, and G. Feng, "A 50–59 GHz CMOS injection locking power amplifier," IEEE Microw. Wireless Compon. Lett., Vol. 25, 52-54, 2015.
    doi:10.1109/LMWC.2014.2369960

    8. Tasi, K.-C. and P. R. Gray, "A 1.9-GHz, 1-W CMOS Class-E power amplifier for wireless communications," IEEE J. Solid-State Circuits, Vol. 34, 962-970, 1999.
    doi:10.1109/4.772411

    9. Han, J.-A., Z.-H. Kong, K. Ma, and K. S. Yeo, "A 26.8 dB gain 19.7 dBm CMOS power amplifier using 4-way hybrid coupling combiner," IEEE Microw. Wireless Compon. Lett., Vol. 25, 43-45, 2015.
    doi:10.1109/LMWC.2014.2365993

    10. Kaymaksut, E., D. Zhao, and P. Reynaert, "Transformer-based doherty power amplifiers for mmwave applications in 40-nm CMOS," IEEE Trans. Microw. Theory Techn., Vol. 63, 1186-1192, 2015.
    doi:10.1109/TMTT.2015.2409255

    11. Ryu, N., B. Park, and Y. Jeong, "A fully integrated high efficiency RF power amplifier for WLAN application in 40 nm standard CMOS process," IEEE Microw. Wireless Compon. Lett., Vol. 25, 382-384, 2015.
    doi:10.1109/LMWC.2015.2421351

    12. Godoy, P. A., S. W. Chung, T. W. Barton, D. J. Perreault, and J. L. Dawson, "A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS," IEEE J. Solid-State Circuits, Vol. 47, 2372-2384, 2012.
    doi:10.1109/JSSC.2012.2202810

    13. Yoon, Y., J. Kim, H. Kim, K. H. An, O. Lee, Ch.-H. Lee, and J. S. Kenney, "A dual-mode CMOS RF power amplifier with integrated tunable matching network," IEEE Trans. Microw. Theory Techn., Vol. 60, 77-88, 2012.
    doi:10.1109/TMTT.2011.2175235

    14. Ham, J., J. Bae, M. Seo, H. Lee, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Dual-mode supply modulator for CMOS envelope tracking power amplifier integrated circuit," Microw. Opt. Technol. Lett., Vol. 57, 1338-1343, 2015.
    doi:10.1002/mop.29107

    15. Kim, H., J. Bae, J. Ham, J. Gu, M. Seo, K. C. Hwang, K.-Y. Lee, C.-S. Park, and Y. Yang, "Efficiency enhanced CMOS digitally controlled dynamic bias switching power amplifier for LTE," Microw. Opt. Technol. Lett., Vol. 57, 2315-2321, 2015.
    doi:10.1002/mop.29330

    16. Nakatani, T., D. F. Kimball, L. E. Larson, and P. M. Asbeck, "0.7–1.8 GHz multiband digital polar transmitter using watt-class current-mode class-D CMOS power amplifier and digital envelope modulation technique for reduced spurious emissions," Int. J. Microw. Wirel. Technol., Vol. 5, 271-284, 2013.
    doi:10.1017/S175907871300041X

    17. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE J. Solid-State Circuits, Vol. 37, 371-383, 2002.
    doi:10.1109/4.987090

    18. Yang, H.-S., J.-H. Chen, and Y.-J. E. Chen, "A 1.2-V 90-nm fully integrated compact CMOS linear power amplifier using the coupled L-shape concentric vortical transformer," IEEE Trans. Microw. Theory Techn., Vol. 62, 2689-2699, 2014.
    doi:10.1109/TMTT.2014.2352602

    19. Son, M., J. Yoo, and C. Park, "A linear CMOS power amplifier using class-D to reduce the number of required inductors," Microw. Opt. Technol. Lett., Vol. 58, 565-569, 2016.
    doi:10.1002/mop.29610

    20. Jeong, H., G. Ko, H. Shin, I. Kang, and C. Park, "A CMOS power amplifier using split input and output transformers to minimize its chip area," Microw. Opt. Technol. Lett., Vol. 58, 1443-1446, 2016.
    doi:10.1002/mop.29829

    21. Lee, C. and C. Park, "Design methodology for a switching-mode RF CMOS power amplifier with an output transformer," Int. J. Microw. Wirel. Technol., Vol. 8, 471-477, 2016.
    doi:10.1017/S1759078715001415

    22. Francois, B. and P. Reynaert, "A fully integrated transformer-coupled power detector with 5GHz RF PA for WLAN 802.11ac in 40 nm CMOS," IEEE J. Solid-State Circuits, Vol. 50, 1237-1250, 2015.
    doi:10.1109/JSSC.2015.2399458

    23. Kumar, R., T. Krishnaswamy, G. Rajendran, D. Sahu, A. Sivadas, M. Nandigam, S. Ganeshan, S. Datla, A. Kudari, H. Bhasin, M. Agrawal, S. Narayan, Y. Dharwekar, R. Garg, V. Edayath, T. Suseela, V. Jayaram, S. Ram, V. Murugan, A. Kumar, S. Mukherjee, N. Dixit, E. Nussbaum, J. Dror, N. Ginzburg, A. EvenChen, A. Maruani, S. Sankaran, V. Srinivasan, and V. Rentala, "A fully integrated 2 × 2 b/g and 1 × 2 a-band MIMO WLAN SoC in 45 nm CMOS for multi-radio IC," IEEE Int. Solid-State Circuits Conf. (ISSCC), 328-329, Feb. 2013.

    24. Son, M., J. Yoo, I. Kang, C. Lee, J. Kim, H. J. Park, Y.-B. Park, and C. Park, "RF CMOS power amplifier using a split inter-stage inductor for IEEE 802.11n applications," Int. J. Microw. Wirel. Technol., Vol. 9, 719-727, 2017.
    doi:10.1017/S1759078716000878