Vol. 91
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-08
Research on Moving Target Imaging Method of Ship Based on Velocity Synthetic Aperture Radar
By
Progress In Electromagnetics Research C, Vol. 91, 27-37, 2019
Abstract
Surface ship imaging technology is widely used in military and civilian applications. To resolve the problem of imaging moving target positioning blur on sea surface, this paper proposes a method for estimating the velocity of moving target using velocity synthetic aperture radar (VSAR). Firstly, the paper analyzes the imaging mechanism and constraints of VSAR method and establishes an imaging model based on phased array radar for surface ships. Then, the rate-frequency estimation method of the multi-antenna image domain is used to correct the azimuth offset, and the image moisture algorithm is used to estimate Doppler frequency modulation. Therefore, the adaptive focusing of the target image is completed. Finally, this method is used to simulate and calculate the surface motion ship to realize continuous dynamic imaging of the moving ship. Compared with the traditional single-channel SAR radar and track-interfering radar (ATI) algorithm, the rate-frequency estimation algorithm solves the shortcomings of the azimuth positioning accuracy and improves the positioning performance of the moving target ship under large-area sea conditions.
Citation
Lin Zhang Yicheng Jiang , "Research on Moving Target Imaging Method of Ship Based on Velocity Synthetic Aperture Radar," Progress In Electromagnetics Research C, Vol. 91, 27-37, 2019.
doi:10.2528/PIERC18120903
http://www.jpier.org/PIERC/pier.php?paper=18120903
References

1. Tang, L.-B., et al., "High resolution SAR imaging of moving ship targets at sea," Journal of Electronics & Information Technology, Vol. 28, No. 4, 624-627, 2006.

2. Renga, A. and A. Moccia, "Use of doppler parameters for ship velocity computation in SAR images," IEEE Transactions on Geo-Science and Remote Sensing, Vol. 54, No. 7, 3995-4011, 2016.
doi:10.1109/TGRS.2016.2533023

3. Ouchi, K. and S.-I. Hwang, "Improvement of ship detection accuracy by SAR multi-look crosscorrelation technique using adaptive CFAR," IEEE International Geoscience & Remote Sensing Symposium, IEEE, 3716-3719, 2010.

4. Jansen, R. W., R. G. Raj, L. Rosenberg, and M. A. Sletten, "Practical multichannel SAR imaging in the maritime environment," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 7, 4025-4036, 2018.
doi:10.1109/TGRS.2018.2820911

5. Li, G., J. Xu, Y.-N. Peng, and X.-G. Xia, "Velocity layover solution in VSAR image," 2006 CIE International Conference on Radar, 16-19, Shanghai, China, 2006.

6. Friedlander, B. and B. Porat, "VSAR: A high resolution radar system for detection of moving targets," IEE Proceedings-Radar, Sonar and Navigation, Vol. 144, No. 4, 205-218, Aug. 1997.
doi:10.1049/ip-rsn:19971309

7. Lombardini, F., et al., "Multibaseline ATI-SAR for robust ocean surface velocity estimation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 2, 417-433, 2004.
doi:10.1109/TAES.2004.1309994

8. Wang, G., X.-G. Xia, and V. C. Chen, "Multi-frequency VSAR imaging of moving targets," Radar Processing, Technology and Applications IV, 159-169, Denver, CO, United States, September 1999.

9. Gang, L., X. Jia, Y.-N. Peng, and X.-G. Xia, "Location and imaging of moving targets using nonuniform linear antenna array SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 1214-1220, 2007.
doi:10.1109/TAES.2007.4383613

10. Sletten, M., et al., "The NRL multi aperture SAR system," 2015 IEEE Radar Conference, 0192-0197, Arlington, VA, USA, May 2015.

11. Sletten, M. A., et al., "Maritime signature correction with the NRL multichannel SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6783-6790, 2016.
doi:10.1109/TGRS.2016.2590958

12. Li, X. and X.-G. Xia, "Location and imaging of elevated moving target using multi-frequency velocity SAR with cross-track interferometry," IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 2, 1203-1211, 2011.
doi:10.1109/TAES.2011.5751252

13. Li, J.-J., S.-Y. Wang, and W.-L. Hu, "Adaptive cell average CFAR detection based on multi-clutter distribution model," Journal of Air Force Radar Academy, Vol. 19, No. 3, 4-7, 2005.

14. Xiao, J., et al., "Estimation of the doppler frequency modulation ratio based on minimum entropy criteria for highly squinted SAR," Modern Radar, Vol. 35, No. 1, 46-54, 2013.

15. Finn, H. M. and R. S. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," Rca Review, Vol. 29, No. 9, 414-464, 1968.

16. Xiong, Y.-F., et al., "Sea surface modeling based on the spectrum of ocean waves modeling and the FFT," Journal of Chongqing University of Technology (Natural Science), Vol. 28, No. 4, 77-82, 2014.

17. Donelan, M. A. and W. J. Pierson, "Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry," Journal of Geophysical Research Oceans, Vol. 92, No. C5, 4971-5029, 1987.
doi:10.1029/JC092iC05p04971

18. Durden, S. and J. Vesecky, "A physical radar cross-section model for a wind-driven sea with swell," IEEE Journal of Oceanic Engineering, Vol. 10, No. 4, 445-451, 1985.
doi:10.1109/JOE.1985.1145133