Vol. 91
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-03-22
Development of Multiple-Frequency Wireless Coordinative Motor Drives
By
Progress In Electromagnetics Research C, Vol. 91, 143-156, 2019
Abstract
This paper proposes and implements a novel class of inductor-capacitor-capacitor wireless coordinative DC motor drives, which not only performs selective wireless power to motors, but also achieves power equalization to ensure the same operation for isolated robotic arms. The key is to make use of the selective wireless power transfer with several resonant frequencies and then use only one transmitter with the inductor-capacitor-capacitor compensation network to provide multiple-frequency transmission without relying on the switched-capacitor array. In order to provide simultaneous and independent wireless power to different motors and hence achieve the desired coordinative motion, a time-division multiplexing scheme and burst firing control are newly employed. Thus, the wireless power transfer system with multiple receivers can achieve better flexibility and simplicity. Both finite element analysis and experimental results are given to verify the validity of the proposed inductor-capacitor-capacitor wireless coordinative DC motor drive. As a result, the motors can achieve independent motion with 1200 rpm and simultaneous motion with 400 rpm when the torque is 10 Ncm, and the operating frequencies are set at 110 kHz and 130 kHz.
Citation
Chaoqiang Jiang Kwok-Tong Chau Christopher Ho Tin Lee Wei Han Wei Liu Wong-Hing Lam , "Development of Multiple-Frequency Wireless Coordinative Motor Drives," Progress In Electromagnetics Research C, Vol. 91, 143-156, 2019.
doi:10.2528/PIERC18122803
http://www.jpier.org/PIERC/pier.php?paper=18122803
References

1. Chau, K. T., C. Jiang, and W. Han, "State-of-the-art electromagnetics research in electric and hybrid vehicles," Progress In Electromagnetics Research, Vol. 159, 139-157, Oct. 2017.
doi:10.2528/PIER17090407

2. Covic, G. A. and J. T. Boys, "Inductive power transfer," Proceedings of the IEEE, Vol. 101, No. 6, 1276-1289, Jun. 2013.
doi:10.1109/JPROC.2013.2244536

3. Jiang, C., K. T. Chau, C. Liu, and C. H. T. Lee, "An overview of resonant circuits for wireless power transfer," Energies, Vol. 10, No. 7, 894:1–20, Jun. 2017.

4. Robichaud, A., M. Boudreault, and D. Deslandes, "Theoretical analysis of resonant wireless power transmission links composed of electrically small loops," Progress In Electromagnetics Research, Vol. 143, 485-501, Nov. 2013.

5. Han, W., K. T. Chau, C. Jiang, and W. Liu, "Accurate position detection in wireless power transfer using magnetoresistive sensors for implant applications," IEEE Transactions on Magnetics, Vol. 54, No. 11, paper No. 4001205, 1–5, Nov. 2018.

6. Jiang, C., K. T. Chau, C. Liu, C. H. T. Lee, W. Han, and W. Liu, "Move-and-charge system for automatic guided vehicles," IEEE Transactions on Magnetics, Vol. 54, No. 11, paper No. 8600105, 1–5, Nov. 2018.

7. Kim, J., H. C. Son, D. H. Kim, and Y. J. Park, "Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV," IEEE Transactions on Consumer Electronics, Vol. 58, No. 3, 775-780, Aug. 2012.
doi:10.1109/TCE.2012.6311317

8. Saad, M., M. Hannan, A. S. Salina, and H. Aini, "Design of spiral circular coils in wet anddry tissue for bio-implanted micro-system applications," Progress In Electromagnetics Research M, Vol. 32, 181-200, Aug. 2013.

9. Hannan, M., M. Saad, A. S. Salina, and H. Aini, "Modulation techniques for biomedical implanted devices and their challenges," Sensor, Vol. 12, No. 1, 297-319, Dec. 2012.
doi:10.3390/s120100297

10. Mi, C. C., G. Buja, S. Y. Choi, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6533-6545, Oct. 2016.
doi:10.1109/TIE.2016.2574993

11. Liu, W., K. T. Chau, C. H. T. Lee, C. Jiang, and W. Han, "A switched-capacitorless energyencrypted transmitter for roadway-charging electric vehicles," IEEE Transactions on Magnetics, Vol. 54, No. 11, 1-6, Jul. 2018.

12. Kim, J., W. S. Choi, and J. Jeong, "Loop Switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, Mar. 2013.
doi:10.2528/PIER13012118

13. Han, W., K. T. Chau, Z. Zhang, and C. Jiang, "Single-source multiple-coil homogeneous induction heating," IEEE Transactions on Magnetics, Vol. 53, No. 11, paper No. 7207706, 1–6, Nov. 2017.

14. Jiang, C., K. T. Chau, Y. Y. Leung, C. Liu, C. H. T. Lee, and W. Han, "Design and analysis of wireless ballastless fluorescent lighting," IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, 4065-4074, May 2019.
doi:10.1109/TIE.2017.2784345

15. Chau, K. T., Electric Vehicle Machines and Drives — Design, Analysis and Application, Wiley- IEEE Press, Jun. 2015.

16. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, Aug. 2014.
doi:10.2528/PIER14071201

17. Jiang, C., K. T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 12-24, Aug. 2018.

18. Qiu, C., K. T. Chau, Z. Zhang, and T. W. Ching, "A comparative study of flux cancellation among multiple interconnected modular pads in lumped IPT system," Progress In Electromagnetics Research M, Vol. 49, 131-140, Aug. 2016.
doi:10.2528/PIERM16060703

19. Badawe, M. E. and O. M. Ramahi, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, Mar. 2018.
doi:10.2528/PIER18011003

20. Jang, B. J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, Jan. 2012.
doi:10.2528/PIER11120511

21. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, Aug. 2014.
doi:10.2528/PIER14071705

22. Badawe, M. E. and O. M. Ramah, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, Mar. 2018.
doi:10.2528/PIER18011003

23. Jiang, C., K. T. Chau, T. W. Ching, C. Liu, and W. Han, "Time-division multiplexing wireless power transfer for separately excited DC motor drives," IEEE Transactions on Magnetics, Vol. 53, No. 11, paper No. 8205405, 1–5, Nov. 2017.

24. Jiang, C., K. T. Chau, C. Liu, and W. Han, "Design and analysis of wireless switched reluctance motor drives," IEEE Transactions on Industrial Electronics, Vol. 66, No. 1, 245-254, Jan. 2019.
doi:10.1109/TIE.2018.2829684

25. Zhang, W., S. C. Wong, K. T. Chi, and Q. Chen, "Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems," IEEE Transactions on Power Electronics, Vol. 29, No. 1, 191-200, Jan. 2014.
doi:10.1109/TPEL.2013.2249112

26. Pantic, Z., S. Bai, and S. M. Lukic, "ZCS-compensated resonant inverter for inductive-powertransfer application," IEEE Transactions on Industrial Electronics, Vol. 58, No. 8, 3500-3510, Aug. 2011.
doi:10.1109/TIE.2010.2081954