Vol. 92

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-13

Wideband-Notched Miniaturized UWB Polygon-Slot Antenna Using Rectangular CSRR

By Bihui Xu, Yan-Wen Zhao, Yuteng Zheng, Li Gu, Qiang-Ming Cai, and Zai-Ping Nie
Progress In Electromagnetics Research C, Vol. 92, 191-200, 2019
doi:10.2528/PIERC19020801

Abstract

A miniaturized planar ultra-wideband (UWB) polygon-slot antenna with wideband-notched property is presented in this paper. With coplanar waveguide (CPW)-fed structure and miniaturized dimensions of 18.5×20.5 mm2, the antenna is easy to be integrated with microwave circuitry. By using one rectangular CSRR on rectangular patch, the WLAN band from 4.8 to 5.9 GHz is rejected. By cutting off two small rectangles in the lower corners of the rectangular patch, Antenna 2 is finally proposed, and UWB impedance matching from 3.1 to 12.6 GHz is achieved. The final proposed antenna is fabricated on a low-cost FR4 substrate and measured, and the measured and simulated results show an acceptable agreement. The antenna is validated to perform good radiation properties such as nearly stable radiation patterns, high gain, and high radiation efficiency.

Citation


Bihui Xu, Yan-Wen Zhao, Yuteng Zheng, Li Gu, Qiang-Ming Cai, and Zai-Ping Nie, "Wideband-Notched Miniaturized UWB Polygon-Slot Antenna Using Rectangular CSRR," Progress In Electromagnetics Research C, Vol. 92, 191-200, 2019.
doi:10.2528/PIERC19020801
http://www.jpier.org/PIERC/pier.php?paper=19020801

References


    1. Sipal, V., B. Allen, D. Edwards, and B. Honary, "Twenty years of ultrawideband: Opportunities and challenges," IET Commun., Vol. 6, No. 10, 1147-1162, Jul. 2012.
    doi:10.1049/iet-com.2011.0281

    2. Islam, M. M., et al., "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, Feb. 2015.
    doi:10.3390/ma8020392

    3. Gupta, A. and R. K. Chaudhary, "A compact CPW-fed wideband metamaterial antenna with EBG loading," Microwave Opt. Technol. Lett., Vol. 57, No. 11, 2632-2636, Nov. 2015.
    doi:10.1002/mop.29384

    4. Sidiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4015-4020, Aug. 2014.
    doi:10.1109/TAP.2014.2327124

    5. Sidiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact dual-SRR-loaded UWB monopole antenna with dual frequency and wideband notch characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 14, 100-103, 2015.
    doi:10.1109/LAWP.2014.2356135

    6. Sarkar, M., S. Dwari, and A. Daniel, "Printed monopole antenna for ultra-wideband application with tunable triple band-notched characteristics," Wireless Pers. Commun., Vol. 84, 2943-2954, 2015.
    doi:10.1007/s11277-015-2774-7

    7. Zhang, Y., et al., "Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3063-3068, Sep. 2008.
    doi:10.1109/TAP.2008.928815

    8. Li, L., Z. L. Zhou, Z. S. Hong, and B. Z. Wang, "Compact dual-band-notched UWB planar monopole antenna with modified SRR," Electronics Letters, Vol. 47, No. 17, Aug. 2011.

    9. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1190-1193, 2011.
    doi:10.1109/LAWP.2011.2172181

    10. Eshtiaghi, R., J. Nourinia, and C. Ghobadi, "Electromagnetically coupled band-notched elliptical monopole antenna for UWB applications," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1397-1402, Apr. 2010.
    doi:10.1109/TAP.2010.2041159

    11. Ellis, M. S., et al., "Small planar monopole ultra-wideband antenna with reduced ground plane effect," IET Microw. Antennas Propag., Vol. 9, 1028-1034, 2015.
    doi:10.1049/iet-map.2014.0538

    12. Chu, Q.-X. and Y.-Y. Yang, "A compact ultrawideband antenna with 3.4 ∼ 5.5GHz dual bandnotched characteristics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3637-3644, Dec. 2008.
    doi:10.1109/TAP.2008.2007368

    13. Lin, Y.-C. and K.-J. Hung, "Compact ultrawideband rectangular aperture antenna and bandnotched designs," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3075-3081, Nov. 2006.

    14. Chakraborty, M., S. Pal, and N. Chottoraj, "Realization of high performance compact CPW-fed planar UWB antenna using higher order asymmetry for practical applications," Microwave Opt. Technol. Lett., Vol. 58, No. 2, 2515-2519, 2016.
    doi:10.1002/mop.29573

    15. Sze, J. Y. and K. L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Trans. Antennas Propag., Vol. 49, 1020-1024, 2001.
    doi:10.1109/8.933480

    16. Shrikanth Reddy, G., A. Kamma, S. K. Mishra, and J. Mukherjee, "Compact bluetooth/UWB dual-band planar antenna with quadruple band-notch characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 872-875, 2014.
    doi:10.1109/LAWP.2014.2320892

    17. Narbudowicz, A., M. John, V. Sipal, X. Bao, and M. J. Ammann, "Design method for wideband circularly polarized slot antennas," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4271-4279, 2015.
    doi:10.1109/TAP.2015.2456954

    18. Xu, B., Y. Zhao, Y. Zheng, and L. Gu, "Compact UWB slot antenna with wideband-notched characteristics based on rectangular SRR," 2016 5th IEEE Asia-Pacific Conference on Antennas and Propagation, Conference Proceedings, 29-30, Feb. 2017.

    19. Pendry, J. B., et al., "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Micr. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
    doi:10.1109/22.798002

    20. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phy. Rev. B, Vol. 65, 195104, 2002.
    doi:10.1103/PhysRevB.65.195104

    21. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617

    22. Chen, X., et al., "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608