Vol. 92

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-14

A Gegenbauer Polynomial Solution for the Electromagnetic Scattering by a Subwavelength Circular Aperture in an Infinite Conducting Screen

By Marios Andreas Christou and Anastasis C. Polycarpou
Progress In Electromagnetics Research C, Vol. 92, 71-85, 2019
doi:10.2528/PIERC19022005

Abstract

In this paper, we use magnetic vector potential formulation, along with equivalence principle and image theory, to solve the electromagnetic scattering of a polarized incident plane wave by a subwavelength circular aperture in a conducting screen. The underlined analytical formulation yields a closed-form solution that is accurate for any angle of incidence or polarization and valid for the near-, intermediate- and far-field regions of observation. The formulation is based on Bouwkamp's diffraction model that uses dominant quasi-static magnetic current modes to represent the governing magnetic current distribution in the circular aperture for any incident wave. Taylor series expansion was implemented on the free-space Green's function, and the individual Taylor terms were integrated analytically to produce closed-form expressions for the scattered fields in all regions. In doing so, the Gegenbauer polynomial expansion was applied in order to allow evaluation of the resulting integrals for any observation point in the lower half space. The results obtained from the proposed analytical approach were compared with data generated through a direct application of a numerical integration technique. The comparison illustrates the validity and accuracy of the proposed analytical formulation.

Citation


Marios Andreas Christou and Anastasis C. Polycarpou, "A Gegenbauer Polynomial Solution for the Electromagnetic Scattering by a Subwavelength Circular Aperture in an Infinite Conducting Screen," Progress In Electromagnetics Research C, Vol. 92, 71-85, 2019.
doi:10.2528/PIERC19022005
http://www.jpier.org/PIERC/pier.php?paper=19022005

References


    1. Mertz, J., Introduction to Optical Microscopy, Roberts and Company Publishers, United States of America, 2009.

    2. Van Labeke, D. and D. Barchiesi, "Probes for scanning tunneling optical microscopy: A theoretical comparison," Journal of Optical Society of America A, Vol. 10, No. 10, 2193-2201, 1993.
    doi:10.1364/JOSAA.10.002193

    3. Thio, T., K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbeseni, "Enhanced light transmission through a single subwavelength aperture," Optics Letters, Vol. 26, No. 24, 1972-1974, 2001.
    doi:10.1364/OL.26.001972

    4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 10, 163-182, 1944.
    doi:10.1103/PhysRev.66.163

    5. Bouwkamp, C. J., "On Bethe’s theory of diffraction by small holes," Philips Res. Rep., Vol. 5, No. 10, 321-332, 1950.

    6. Bouwkamp, C. J., "Diffraction theory. A critique of some recent developments,", Washington Sq. College of Arts and Science, New York University, 1953.

    7. Balanis, A. C., Advanced Engineering Electromagnetics, 2nd edition, Wiley, New Jersey, 2012.

    8. Leviatan, Y., "Study of near-zone fields of a small aperture," Journal of Applied Physics, Vol. 60, No. 5, 1577-1583, 1986.
    doi:10.1063/1.337294

    9. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," Journal of Modern Optics, Vol. 39, No. 3, 645-661, 1992.
    doi:10.1080/09500349214550611

    10. Durig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," Journal of Applied Physics, Vol. 59, No. 10, 3318-3327, 1986.
    doi:10.1063/1.336848

    11. Miexner, J. and W. Andrejewski, "Strenge theorie der beugungebener elektromagnetischer wellen an der vollkommen leitenden kreisscheibe und an der kreisformigen Offnung im vollkommen leitenden ebenen schirm," Ann. Physik, Vol. 7, 157-158, 1950.
    doi:10.1002/andp.19504420305

    12. Born, M. and E. Wolf, Principles of Optics, Pergamon Press, London, 1959.

    13. Flammer, C., "The vector wave function of the diffraction of electromagnetic waves by circular disks and apertures. I. Oblate spheroidal vector wave functions," Journal of Applied Physics, Vol. 24, 1218-1223, 1953.
    doi:10.1063/1.1721474

    14. Roberts, A., "Electromagnetic theorycof diffraction by a circular aperture in a thick, perfectly conducting screen," Journal of Optical Society of America A, Vol. 4, 197-1983, 1987.
    doi:10.1364/JOSAA.4.001970

    15. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy," Journal of Optical Society of America A, Vol. 12, No. 4, 695-703, 1995.
    doi:10.1364/JOSAA.12.000695

    16. Van Labeke, D., F. Baida, D. Barchiesi, and D. Courjon, "A theoretical model for the inverse scanning tunneling optical microscope (ISTOM)," Opt. Communi., Vol. 114, No. 5–6, 470-480, 1995.
    doi:10.1016/0030-4018(94)00555-9

    17. Michalski, K. A., "Spectral domain analysis of a circular nano-aperture illuminating a planar layered sample," Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011.
    doi:10.2528/PIERB11011010

    18. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
    doi:10.2528/PIERB10101602

    19. Kobayashi, I., "Darstellung eines potentials in zylindrical koordinaten, das sich auf einer ebene unterwirft," Science Reports of the Thohoku Imperifal Unversity, Ser. I, Vol. XX, No. 2, 197–212, 1931.

    20. Nomura, Y. and S. Katsura, "Diffraction of electric wave by circular plate and circular hole," Sci. Rep., Inst., Electr. Comm., Vol. 10, 1-26, Tohoku University, 1958.

    21. Hongo, K. and Q. A. Naqvi, "Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane," Progress In Electromagnetic Research, Vol. 68, 113-150, 2007.
    doi:10.2528/PIER06073102

    22. Michalski, K. A. and J. R. Mosig, "On the plane wave-excited subwavelength circular aperture in a thin perfectly conducting flat screen," IEEE Trans. Antennas Propag., Vol. 62, 2121-2129, 2014.
    doi:10.1109/TAP.2014.2302839

    23. Michalski, K. A. and J. R. Mosig, "Analysis of a plane wave-excited subwavelength circular aperture in a planar conducting screen illuminating a multilayer uniaxial sample," IEEE Trans. Antennas Propag., Vol. 63, 2054-2063, 2015.
    doi:10.1109/TAP.2015.2404573

    24. Polycarpou, A. C. and A. M. Christou, "Closed-form expressions for the on-axis scattered fields by a sub-wavelength circular aperture in an infinite conducting plane," IEEE Trans. Antennas Propag., Vol. 65, 978-982, 2017.
    doi:10.1109/TAP.2016.2634278

    25. Arfken, G. B. and H. J.Weber, Mathematical Methods for Physicists, 6th edition, Elsevier, 2005.