Vol. 92

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-17

Design of a High-Efficiency Broadband Asymmetric Doherty Power Amplifier

By Bin Wang, Jiang Teng, Debao Zhang, and Dong Su
Progress In Electromagnetics Research C, Vol. 92, 227-238, 2019
doi:10.2528/PIERC19022802

Abstract

This study proposes a broadband asymmetric Doherty power amplifier (A-DPA) with a broadband matching network and an improved power combination network (PCN). A broadband matching network in the form of a low-pass filter is analyzed and applied in this work. With the narrowband characteristic of a 1/4 wavelength transmission line, an improved PCN is also analyzed and applied to decrease the impedance transformation ratio of the 1/4 wavelength transmission line and then extend the working bandwidth of the DPA. In the design process, GaN HEMTs from Cree are selected to be the main and auxiliary power amplifier transistors, and the ADS software is used to complete the entire design process. In the working frequency band of 3.3-3.6 GHz, simulated results show that the gain is approximately 13 dB when the output power is lower than 40 dBm and that the power-added efficiency (PAE) is 39%-51% within the 9 dB power back-off (PBO) region. Measured results indicate that the proposed A-DPA exhibits a 36%-45% PAE within the 9 dB PBO region. The saturated PAE is between 58% and 62%, and the saturated output power is approximately 42 dBm.

Citation


Bin Wang, Jiang Teng, Debao Zhang, and Dong Su, "Design of a High-Efficiency Broadband Asymmetric Doherty Power Amplifier," Progress In Electromagnetics Research C, Vol. 92, 227-238, 2019.
doi:10.2528/PIERC19022802
http://www.jpier.org/PIERC/pier.php?paper=19022802

References


    1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of radio engineers, Vol. 24, No. 9, 1163-1182, 1936.

    2. Ahn, G. H., M. S. Kim, H. C. Park, and Y. G. Yang, "Design of a high efficiency and high-power inverted Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 6, 1105-1111, 2007.
    doi:10.1109/TMTT.2007.896807

    3. Lee, Y. S., M. W. Lee, and Y. H. Jeong, "Highly linear power tracking Doherty amplifier for WCDMA repeater applications," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 485-487, 2008.
    doi:10.1109/LMWC.2008.925113

    4. Liu, Q.-A., S.-B. He, and W.-M. Shi, "Design of 3.5GHz linear high efficiency Doherty power amplifier with pre-matching," 2015 Asia Pacific Microwave Conference (APMC), 1-3, Nan Jing, 2015.

    5. Xia, J., M. Yang, Y. Guo, and A. Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, 2016.
    doi:10.1109/TMTT.2016.2574861

    6. Qi, T. and S. He, "Design of high efficiency Doherty power amplifier applying power controlling technology with 15 dB output power back-off," 2017 47th European Microwave Conference (EuMC), 576-579, Nuremberg, 2017.
    doi:10.23919/EuMC.2017.8230913

    7. Zhou, X., S. Zheng, W. Chan, X. Fang, and D. Ho, "Post matching Doherty power amplifier with extended back-off range based on self-generated harmonic injection," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1951-1963, 2018.
    doi:10.1109/TMTT.2017.2784811

    8. Son, J., I. Kim, J. Moon, J. Lee, and B. Kim, "A highly efficient asymmetric Doherty power amplifier with a new output combining circuit," 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), 1-4, TelAviv, 2011.

    9. Jang, D., J. Choi, and J. Kim, "Asymmetric Doherty power amplifier with optimized characteristics in output power back-off range between 6 dB and 10 dB," The 40th European Microwave Conference, 870-873, Paris, 2010.

    10. Iwamoto, M., A. Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 12, 2472-2479, 2001.
    doi:10.1109/22.971638

    11. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, 2009.
    doi:10.1002/mmce.20350

    12. Colantonio, P., F. Giannini, R. Giofre, and L. Piazzon, "The AB-C Doherty power amplifier. Part II: validation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 307-316, 2009.
    doi:10.1002/mmce.20351

    13. Parkvall, S., A. Furuskar, and E. Dahlman, "Evolution of LTE toward IMT-advanced," IEEE Transactions on Communication Magazine, Vol. 49, No. 2, 84-91, 2011.
    doi:10.1109/MCOM.2011.5706315

    14. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, 2012.
    doi:10.1109/TMTT.2011.2175237

    15. Kwon, J., M. Seo, H. Lee, J. Gu, J. Ham, K. C. Hwang, and K. Lee, "Broadband Doherty power amplifier based on asymmetric load matching networks," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 6, 533-537, 2015.
    doi:10.1109/TCSII.2015.2407197

    16. Pang, J., S. He, Z. Dai, C. Huang, J. Peng, and F. You, "Design of a post-matching asymmetric Doherty power amplifier for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 52-54, 2016.
    doi:10.1109/LMWC.2015.2505651

    17. Pang, J., S. He, C. Huang, Z. Dai, J. Peng, and F. You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, 2015.
    doi:10.1109/TMTT.2015.2495201

    18. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3–3.6GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, 2012.
    doi:10.1109/TMTT.2012.2201745

    19. Sun, Y. and X. Zhu, "Broadband continuous class-F−1 amplifier with modified harmonic-controlled network for advanced long term evolution application," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 4, 250-252, 2015.
    doi:10.1109/LMWC.2015.2400941

    20. Aridas, N. K., B. S. Yarman, and P. Chacko, "Wideband power amplifier for two-way radio applications via real-frequency technique," Electronics Letters, Vol. 50, No. 23, 1762-1764, 2014.
    doi:10.1049/el.2014.2972

    21. Pozar, D. M., Microwave Engineering, 3rd Edition, Publishing House of Electronics Industry, 2015.

    22. Chen, K. and D. Peroulis, "Design of highly efficient broadband class-E power amplifier using synthesized low-pass matching networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3162-3173, 2011.
    doi:10.1109/TMTT.2011.2169080

    23. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, 2013.
    doi:10.1109/LMWC.2012.2236308

    24. Matthaei, G. L., "Tables of Chebyshev impedance transformation networks of low-pass filter form," Proceedings of the IEEE, Vol. 52, No. 8, 939-963, 1964.
    doi:10.1109/PROC.1964.3185

    25. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "An ultra-broadband GaN Doherty amplifier with 83% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 11, 775-777, 2014.
    doi:10.1109/LMWC.2014.2345193

    26. Watanabe, S., Y. Takayama, R. Ishikawa, and K. Honjo, "A miniature broadband Doherty power amplifier with a series-connected load," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 572-579, 2015.
    doi:10.1109/TMTT.2014.2377725

    27. Chen, C., P. Qiao, G. Wang, Z. Cheng, and Q. Xue, "A broadband three-device Doherty power amplifier based on a modified load modulation network," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, San Francisco, CA, 2016.

    28. Huang, C., S. He, and F. You, "Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations," IEEE Access, Vol. 6, 2531-2540, 2018.
    doi:10.1109/ACCESS.2017.2784094

    29. Khan, M. S., H. Zhang, X. Wang, R. Ullah, I. Ahmad, S. Shahzad, Q. A. Arain, and M. Z. Tunio, "A novel two-stage broadband Doherty power amplifier for wireless applications," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 40-42, 2018.
    doi:10.1109/LMWC.2017.2775157