Vol. 95
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-08-19
A Study of Antenna Elements Configuration and User's Hand Effects on a Four-Element Dual-Band Sub-6 GHz MIMO Antenna
By
Progress In Electromagnetics Research C, Vol. 95, 29-46, 2019
Abstract
This paper evaluates the performance of different configurations of MIMO antenna operating in the 5G band with the effect of user's hand in data mode and suggests an optimized configuration to mitigate hand effects. A dual-band four-element MIMO antenna is used. All antenna elements (AEs) are identical planar inverted-F antenna (PIFAs) with a lower frequency band (LB) from 3.3 to 3.8 GHz and an upper frequency band (UB) from 5.2 to 6 GHz. In addition, four different configurations to place the AEs on the chassis are selected including worst and optimized configurations as well two intermediate cases. Results show that similar values of ECC are produced for both cases without and with user hand. These values are less than 0.20 on most frequency range, except the worst case configuration which has some high ECC values close to unity. Unlike ECC, TE is severely affected by user's hand as well as by the different configuration. TE of each AE under hand effect is degraded differently according to the thickness of hand tissue that covers it. TE in the optimized configuration without user's hand ranges between 50 and 95% in both frequency bands. However, this range deteriorates when user's hand effect is considered, between 40% and 15% in LB, and from 35% to 41% in the UB. Multiplexing efficiency analysis reveals that MIMO performance is mainly determined by TE, and the impact of the low ECC is insignificant. This indicates that improving the performance depends on improving the TE of AEs and optimizing their positions on the chassis to reduce interaction with user's hand. Moreover, the loss in ergodic capacity due to user's hand compared with free space is increased from 5 to 40% in the LB, and it is more stable in the UB and ranging between 12 and 17%.
Citation
Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Mohd Fais Mansor, Ping Jack Soh, and Rizwan Khan, "A Study of Antenna Elements Configuration and User's Hand Effects on a Four-Element Dual-Band Sub-6 GHz MIMO Antenna," Progress In Electromagnetics Research C, Vol. 95, 29-46, 2019.
doi:10.2528/PIERC19050601
References

1. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," Int. J. Commun. Syst., Vol. 19, No. 10, 1081-1087, 2006.
doi:10.1002/dac.784

2. Astely, D., E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, "LTE: The evolution of mobile broadband," IEEE Commun. Mag., Vol. 47, No. 4, 44-51, 2009.
doi:10.1109/MCOM.2009.4907406

3. Fan, W., X. Carreno, P. Kyosti, and J. O. Nielsen, "Over-the-air testing of MIMO-capable terminals," IEEE Vehicular Technology Magazine, Vol. 10, No. 2, 38-46, June 2015.
doi:10.1109/MVT.2015.2410314

4. Yanakiev, B., J. O. Nielsen, M. Christensen, and G. F. Pedersen, "On small terminal antenna correlation and impact on MIMO channel capacity," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 689-699, 2012.
doi:10.1109/TAP.2011.2173442

5. Gesbert, D., M. Shafi, D. Shiu, P. J. Smith, and A. Naguib, "From theory to practice: An overview of MIMO space-time coded wireless systems," IEEE J. Sel. Areas Commun., Vol. 21, No. 3, 281-302, 2003.
doi:10.1109/JSAC.2003.809458

6. Song, H. J., et al., "Evaluation of vehicle-level MIMO antennas: Capacity, total embedded e±ciency, and envelope correlation," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 89-92, 2014.
doi:10.1109/APWC.2014.6905525

7. Nielsen, J. O., B. Yanakiev, S. C. Del Barrio, and G. F. Pedersen, "Channel models for capacity evaluation of MIMO handsets in data mode," IET Microwaves, Antennas Propag., Vol. 11, No. 1, 1-9, 2017.
doi:10.1049/iet-map.2015.0769

8. Harrysson, F., A. Derneryd, and F. Tufvesson, "Evaluation of user hand and body impact on multiple antenna handset performance," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

9. Zhekov, S. S., A. Tatomirescu, E. Foroozanfard, and G. F. Pedersen, "Experimental investigation on the effect of user's hand proximity on a compact ultrawideband MIMO antenna array," IET Microwaves, Antennas Propag., Vol. 10, No. 13, 1402-1410, 2016.
doi:10.1049/iet-map.2016.0054

10. Holopainen, J., O. Kivekas, J. Ilvonen, R. Valkonen, C. Icheln, and P. Vainikainen, "Effect of the user's hands on the operation of lower UHF-band mobile terminal antennas: Focus on digital television receiver," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 831-841, 2011.
doi:10.1109/TEMC.2011.2106788

11. Abbasi, Q. H., H. El Sallabi, E. Serpedin, K. Qaraqe, A. Alomainy, and Y. Hao, "Ellipticity statistics of ultra wideband MIMO channels for body centric wireless communication," 2016 10th European Conference on Antennas and Propagation (EuCAP), IEEE, 2016.

12. Helander, J., K. Zhao, Z. Ying, and D. Sjoberg, "Performance analysis of millimeter-wave phased array antennas in cellular handsets," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 504-507, 2016.
doi:10.1109/LAWP.2015.2455040

13. Zhao, K., J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mmWave communication system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 864-867, 2017.
doi:10.1109/LAWP.2016.2611674

14. Zhang, S., X. Chen, I. Syrytsin, and G. F. Pedersen, "A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6413-6421, 2017.
doi:10.1109/TAP.2017.2681463

15. Li, Y. and G. Yang, "Dual-mode and triple-band 10-antenna handset array and its multiple-input multiple-output performance evaluation in 5G," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 2, e21538, 2019.

16. Li, Y., Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161

17. Rohani, B., K. Takahashi, H. Arai, Y. Kimura, and T. Ihara, "Improving channel capacity in indoor 4 x 4 MIMO base station utilizing small bidirectional antenna," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 393-400, 2018.
doi:10.1109/TAP.2017.2771951

18. Di Paola, C., I. Syrytsin, S. Zhang, and G. F. Pedersen, "Investigation of user effects on mobile phased antenna array from 5 to 6 GHz," 2018 IEEE 12th European Conference on Antennas and Propagation (EuCAP), 5 pages, April 2018.

19. Ying, Z., "Antennas in cellular phones for mobile communications," Proc. IEEE, Vol. 100, No. 7, 2286-2296, 2012.
doi:10.1109/JPROC.2012.2186214

20. Andersen, J. B., L. Fellow, J. O. Nielsen, and G. F. Pedersen, "Absorption related to hand-held devices in data mode," IEEE Trans. Electromagn. Compat., Vol. 58, No. 1, 47-53, 2016.
doi:10.1109/TEMC.2015.2504398

21. Syrytsin, I., S. Zhang, G. Pedersen, K. Zhao, T. Bolin, and Z. Ying, "Statistical investigation of the user effects on mobile terminal antennas for 5G applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6596-6605, 2017.
doi:10.1109/TAP.2017.2681701

22. Recioui, A. and H. Bentarzi, "Genetic algorithm based MIMO capacity enhancement in spatially correlated channels including mutual coupling," Wirel. Pers. Commun., Vol. 63, No. 3, 689-701, 2012.
doi:10.1007/s11277-010-0159-5

23. Recioui, A. and H. Bentarzi, "Capacity optimization of MIMO wireless communication systems using a hybrid genetic-taguchi algorithm," Wirel. Pers. Commun., Vol. 71, No. 2, 1003-1019, 2013.
doi:10.1007/s11277-012-0857-2

24. Recioui, A., "Application of a galaxy-based search algorithm to MIMO system capacity optimization," Arab. J. Sci. Eng., Vol. 41, No. 9, 3407-3414, 2016.
doi:10.1007/s13369-015-1934-0

25. Zhao, K., Mobile antenna systems for 4G and 5G applications with user body interaction, KTH Royal Institute of Technology, 2017.

26. Khan, R., A. Abdullah Al-Hadi, P. J. Soh, M. T. Ali, S. S. Al-Bawri, and Owais, "Design and optimization of a dual-band sub-6 GHz four port mobile terminal antenna performance in the vicinity of user's hand," Progress In Electromagnetics Research C, Vol. 85, 141-153, 2018.
doi:10.2528/PIERC18050101

27. Haraz, O. M., M. Ashraf, and S. Alshebeili, "Single-band PIFA MIMO antenna system design for future 5G wireless communication applications," 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 608-612, 2015.

28. Moradi Kordalivand, A., T. A. Rahman, and M. Khalily, "Common elements wideband MIMO antenna system for WiFi/LTE access-point applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1601-1604, 2014.
doi:10.1109/LAWP.2014.2347897

29. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas with user effects," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

30. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas in arbitrary propagation scenarios," 2012 6th European Conference on Antennas and Propagation (EUCAP), 373-377, 2012.
doi:10.1109/EuCAP.2012.6205897

31. Zhao, K., E. Bengtsson, Z. Ying, and S. He, "Multiplexing efficiency of high order MIMO in mobile terminal in different propagation scenarios," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

32. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 183-186, 2011.
doi:10.1109/LAWP.2011.2125773

33. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224

34. De Flaviis, F., L. Jofre, J. Romeu, and A. Grau, "Multiantenna systems for MIMO communications," Synth. Lect. Antennas, Vol. 3, No. 1, 1-250, 2008.
doi:10.2200/S00104ED1V01Y200803ANT007